Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\left(1\right)\)
Vì \(2010;2012;2014\) đều là số mủ chẵn (2)
Từ (1) và (2)
\(\Rightarrow\left(3x-5\right)=0;\left(y-1\right)=0;\left(x-z\right)=0\)
\(\left(+\right)3x-5=0\Rightarrow3x=5\Rightarrow x=\frac{5}{3}\)
\(\left(+\right)y-1=0\Rightarrow y=1\)
\(\left(+\right)x-z=0\Rightarrow z=x=\frac{5}{3}\)
Vậy \(x=z=\frac{5}{3};y=1\)
Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)
Mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy x = z = 1 và y = 2
Ta có:
\(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)
Từ đó ta tính được x=1; y=2; z=1
M=a+b=c+d=e+f.M=a+b=c+d=e+f.
⇒⎧⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪⎩a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)⇒{a7=b11=a+b7+11=M18(1)c11=d13=c+d11+13=M24(2)e13=f17=e+f13+17=M30(3)
Kết hợp (1),(2)và(3)(1),(2)và(3)
⇒M∈BCNN(18;24;30).⇒M∈BCNN(18;24;30).
⇒M∈{0;360;720;1080;...}⇒M∈{0;360;720;1080;...}
Mà MM là số tự nhiên nhỏ nhất có 4 chữ số.
⇒M=1080.⇒M=1080.
Vậy M=1080.
nhớ cho mình 1 k nhé chúc bạn học tốt
Shbh=a x h= 48 x (48 x \(\frac{1}{3}\) ) =768 (cm2 )
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)