K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

1.

a. \(\dfrac{x}{7}=-\dfrac{12}{49}\Rightarrow x=\dfrac{-12\cdot7}{49}=-\dfrac{12}{7}\)

Vậy \(x=-\dfrac{12}{7}\)

b. \(\dfrac{2}{3}:x=\dfrac{1}{8}:0,125\)

\(\Rightarrow x=\dfrac{\dfrac{2}{3}\cdot0,125}{\dfrac{1}{8}}=\dfrac{2}{3}\cdot\dfrac{1}{8}\cdot8=\dfrac{2}{3}\)

Vậy \(x=\dfrac{2}{3}\)

3. Gọi độ dài 3 góc của tam giác lần lượt là x,y,z (0o<x,y,z<180o)

Ta có: \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) và x+y+z = 180o

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180^o}{6}=30^o\)

\(\Rightarrow x=30^o\cdot1=30^o\)

\(y=30^o\cdot2=60^o\)

\(z=30^o\cdot3=90^o\)

Ta có: \(z=90^o\)

\(\Rightarrow\) Tam giác đó là tam giác vuông

18 tháng 8 2017

mik cảm ơn bạn

15 tháng 7 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)

Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).


16 tháng 7 2017

Đừng hỏi tên tôi Kcj ^ ^

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

26 tháng 6 2017

\(VT=\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}\)

\(=\left(a+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+d}\right)+\left(b+d\right)\left(\dfrac{1}{b+c}+\dfrac{1}{d+a}\right)\)

Ap dụng \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y} \left(\forall x,y>0\right)\)

Ta có: \(VT\ge\left(a+c\right).\dfrac{4}{a+b+c+d}+\left(b+d\right).\dfrac{4}{a+b+c+d}\)

\(=\dfrac{4\left(a+b+c+d\right)}{\left(a+b+c+d\right)}=4\left(ĐPCM\right)\)

27 tháng 4 2017

thực sự là mình không biết vẽ hình

Chứng minh

a, Xét \(\Delta ABE\)\(\Delta DBE\)

BE chung

\(\widehat{BAE}=\widehat{BDE}\) (=1v)

BA = BD (gt)

\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

b, \(\Delta ABE=\Delta DBE\) (câu a )

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\) (hai gó tương ứng)

\(\Rightarrow EA=ED\) (hai cạnh tương ứng) (1)

\(\Delta EDC\) vuông tại D

\(\Rightarrow EC>ED\) (2)

Từ (1) và (2) \(\Rightarrow EC>EA\)

Gọi N là giao điểm của AD và BE

Xét \(\Delta ABN\)\(\Delta DBN\) có :

BA = BD (gt)

\(\widehat{ABN}=\widehat{DBN}\) (c/m trên)

BN chung

\(\Rightarrow\Delta ABN=\Delta DBN\) (c.g.c)

\(\Rightarrow AN=ND\) (hai cạnh tương ứng) (3)

\(\widehat{ANB}=\widehat{DNB}\) (hai góc tương ứng)

\(\widehat{ANB}+\widehat{DNB}=180^O\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\) (=1v) (4)

Từ (3) và (4) \(\Rightarrow BE\) là đường trung trực của AD

27 tháng 4 2017

a) xét 2 tam giac vuong ABE va DBE co

AB = BD (gt)

BE canh chung

suy ra: tam giac ABE = tam giac DBE (ch-cgv)

b) tu cau a) Tam giac ABE = tam giac DBE

Suy ra :AE = DE (2 canh tuong ung) (1)_

trong tam giác EDC vuông tại D

suy ra : EC > DE (canh huyen lon hon cach goc vuong ) (2)

Tu (1) va (2) suy ra: EC >EA

Ta co : AE=ED (cmt)

suy ra: E thuộc đường trung trực của AD (3)

ta có:AB=BD(gt)

suy ra: B thuoc duong trung truc AD (4)

tu (3) va (4) suy ra: BE la duong trung truc cua AD


A B C E D M

21 tháng 2 2017

TA CÓ AM LÀ TRUNG TUYẾN CỦA BC MÀ BC=CM+BM=>CM=BM=5CM

XÉT TAM GIÁC AMB VUÔNG TẠI M ;ÁP DỤNG ĐL PYTAGO TA CÓ

MA^2+MB^2=AB^2

=>AM^2=AB^2-BM^2

=>AM^2=13^2-10^2

=>AM^2=69

=>AM=\(\sqrt{69}\)

B,

21 tháng 2 2017

thanks

hihi

30 tháng 10 2017

Từ a/b=c/d⇒a/c=b/d

Áp dụng tính chất dãy tỉ số bằng nhau

a/c=b/d=a+b/c+d

⇒a^3/c^3=b^3/d^3=(a+b)^3/(c+d)^3 (1)

Từ a^3/c^3=b^3/d^3=a^3-b^3/c^3-d^3 (2)

Từ (1) và (2)

⇒(a+b)^3/(c+d)^3=a^3-b^3/c^3-d^3

\(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

\(\Leftrightarrow\left(a+5\right)\left(b-6\right)=\left(a-5\right)\left(b+6\right)\)

\(\Leftrightarrow ab-6a+5b-30=ab+6a-5b-30\)

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

hay a/b=5/6

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)