Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.
a) ĐKXĐ của phương trình : \(4x^2+4x+1\ne0\)\(\Rightarrow x\ne-\frac{1}{2}\)
b) \(P=\frac{4x^3+8x^2-x-2}{4x^2+4x+1}\)
\(\Rightarrow P=\frac{\left(4x^3-x\right)+\left(8x^2-2\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P=\frac{x\left(4x^2-1\right)+2\left(4x^2-1\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)
\(\Rightarrow P\left(x\right)=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{3}{2}\)\(\Rightarrow P\left(x\right)=2\left(x+2\right)\left(2x-1\right)=3\left(2x+1\right)\)
\(\Rightarrow P\left(x\right)=4x^2+6x-6-\left(6x+3\right)=0\)
\(\Rightarrow P\left(x\right)=4x^2-9=0\)\(\Rightarrow P\left(x\right)=x^2=\frac{9}{4}\)
\(\Rightarrow P\left(x\right)=x^2=\sqrt{\frac{9}{4}}\)\(\Rightarrow P\left(x\right)=\frac{3}{2}\)
câu c) cx tương tự
\(\text{Đk:}x\ne-\frac{1}{2}\Rightarrow P=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(4x^2-1\right)\left(x+2\right)}{\left(2x+1\right)^2}=\frac{\left(2x-1\right)\left(x+2\right)}{2x+1}\)
\(=\frac{2x^2+4x-x-2}{2x+1}=\frac{3}{2}\Rightarrow2x^2+3x-2=3x+\frac{3}{2}\Leftrightarrow2x^2-\frac{7}{2}=0......\)
\(P\text{ nguyên }\Rightarrow2x^2+3x-2⋮2x+1\Leftrightarrow2x^2+3x-2-\left(x+1\right)\left(2x+1\right)⋮2x+1\Leftrightarrow-3⋮2x+1....\)
a) \(P=\frac{4x^3+8x^2+x-2}{4x^2+4x+1}=\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}\)
ĐKXĐ :\(\left(2x+1\right)^2\ne0=>2x+1\ne0=>x\ne-\frac{1}{2}\)
b) \(P=\frac{3}{2}\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2}=\frac{3}{2}\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(2x-1\right)}{2x+1}=\frac{3}{2}\Leftrightarrow4x^2-2x+8x-4=6x+3\)
\(\Rightarrow4x^2=7=>x^2=\frac{7}{4}=>x=\pm\sqrt{\frac{7}{4}}\)
c) \(P=\frac{\left(x+2\right)\left(2x-1\right)}{\left(2x+1\right)}=\frac{\left(x+2\right)\left(2x+1-2\right)}{2x+1}=\frac{\left(x+2\right)\left(2x+1\right)-2\left(x+2\right)}{2x+1}\)
\(=x+2-\frac{2x+2}{2x+1}=x+2-1-\frac{1}{2x+1}\)
để P nguyền khi zà chỉ khi
\(1⋮2x+1\)
\(=>2x+1\inƯ\left(1\right)=\pm1\)
=>\(\orbr{\begin{cases}2x+1=1\\2x+1=-1\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
1.
\(A=\frac{x^2-x+2}{x-2}=\frac{x(x-2)+(x-2)+4}{x-2}=x+1+\frac{4}{x-2}\)
Với $x$ nguyên, để $A$ nguyên thì $\frac{4}{x-2}$ nguyên.
Điều này xảy ra khi $4\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 4\right\}$
$\Rightarrow x\in \left\{3; 1; 0; 4; 6; -2\right\}$
2.
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1\)
Với $x$ nguyên thì $P=2x-1$ nguyên.
$\Rightarrow P$ nguyên với mọi giá trị $x$ nguyên.