Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\) b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)
c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)
\(\sqrt{2x+3}\) có nghĩa khi
\(2x+3\ge0\)
\(\Leftrightarrow2x\ge-3\)
\(\Leftrightarrow x\ge-\frac{3}{2}\)
Vậy .....
1) \(\sqrt{-3x+1}\) có nghĩa \(\Leftrightarrow\sqrt{-3x+1}\ge0\)
\(\Leftrightarrow-3x+1\ge0\Leftrightarrow-3x\ge-1\Leftrightarrow x\le\frac{1}{3}\)
2) \(\sqrt{2x+3}\) có nghĩa \(\Leftrightarrow\sqrt{2x+3}\ge0\Leftrightarrow2x+3\ge0\Leftrightarrow2x\ge-3\Leftrightarrow x\ge\frac{-3}{2}\)
3) \(\sqrt{\frac{-1}{2x+1}}\) có nghĩa \(\Leftrightarrow\sqrt{\frac{-1}{2x+1}}\ge0\Leftrightarrow\frac{-1}{2x+1}\ge0\Leftrightarrow2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< \frac{-1}{2}\)
Bài 1
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\ge0\\x^2-2x-1=\left(3x-2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{2}{3}\\8x^2-10x+5=0\end{matrix}\right.\) \(\Rightarrow\) pt vô nghiệm
Bài 2:
a/ ĐLXĐ: \(x^2+2x+1>0\Rightarrow\left(x+1\right)^2>0\Rightarrow x\ne-1\)
b/ \(\sqrt{\frac{-2}{-x^2-2x-1}}=\sqrt{\frac{2}{x^2+2x+1}}\)
ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)