Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) Ta có: \(\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}.\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right).\)
2.
Chúc bạn học tốt!
Chào em, em hãy xem lời giải dưới đây nhé!
Lời giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2
=abz−acy+bcx−abz+acy−bcx/a2+b2+c2 =0 (*)
Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z (1)
Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x (2)
Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b)
Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2
Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y
Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2
Từ đó tìm đc x, y
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)
\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)
ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)
p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'
mk k viết đề nha bạn!
\(=>\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c.\left(by-ax\right)}{c^2}\)
\(=>\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\)\(=\frac{abz-acy+bcx-acz+cay-bcx}{a^2+b^2+c^2}=0\)
\(=>\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bc}{c}=0\)
=> bz - cy = cx - az = ay - bx = 0
+) bz - cy = 0 => bz = cy => y / b = z/c
+) cx - az = 0 => cx = az => x / a = z/ c
=> x / a = y / b = z/ c ( dpcm )
vế 1 thiếu x
vế 2 thiếu y
vế 3 thiếu z
nhấn ba vế với cái thiếu
ta có
\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)
Theo TCDTSBN`, ta có
\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)
= cộng chừng đó lại tử + tử, mẫu + mẫu
=0/(ax+by+cz)
=0
=>bzx=cxy
=>cxy=ayz
=>bxz=cxy=ayz
=>a:b:c=x:y:z
đó mỏi tay lắm rồi đó