Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
9x2-6x-3=0
=>9x2-9x+3x-3=0
=>(x-1)(9x-3)=0
=>x-1=0 hoặc 9x+3 = 0
=> x=1 hoặc x=-1/3
b. x3+9x2+27x+19=0
x3+x2+8x2+8x+19x+19=0
(x+1)(x2+8x+19)=0
x+1=0 => x=-1
x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x
a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)
\(\Rightarrow3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)
\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)
Mk k co thoi gian. buoc tiep theo tu lam not nhe
a/. x3 - 9x2 +27x - 19 = 0
<=> (x3 - 3.x2 .3 + 3.32 .x - 33) + 8 = 0
<=> (x - 3)3 + 8 = 0
<=> (x - 3 + 2) [(x - 3)2 - 2(x-3) +4] = 0
<=> (x -1)(x2 - 6x+ 9 -2x +6 +4) =0
<=> (x - 1)(x2 - 8x + 19) = 0
<=> x - 1 = 0 => x = 1
Vậy S = {1}
Xem lại đề câu b nha bạn?
c/. x3 + 1 -7x -7 =0
<=> (x3 + 1) -7(x+1)=0
<=> (x+1)(x2-x+1) -7(x+1)=0
<=> (x+1)(x2-x+1-7)=0
<=> x + 1 = 0 hay x2 -x - 6 = 0
<=> x = -1 hay (x2 - 3x) + (2x - 6) = 0
<=> x(x - 3) +2(x-3) = 0
<=> (x - 3)(x+2) = 0
<=> x = -1 hay x = 3 hay x = -2
Vậy S = {-1;3;-2}
X3 - X2-8X2+8X+19X-19=0
<=>X2(X-1)-8X(X-1)+19(X-1)=0
<=>(X-1)(X2-8X+19)=0
vi X2-8X+19=(X-4)2+3>3
a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)
=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)
=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)
=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)
\(b...x^3-19x+30=0\)
\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)
=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)
=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)
=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)
=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)
Vậy x=-5;2;3
a, ( x + 1 ) = 0
<=> x = -1
b, x3 - 9x2 + 27x - 27 = 0
<=> ( x - 3 )3 = 0
<=> x - 3 = 0
<=> x = 3
Bài 1:
\(a,27x^3+27x^2+9x+1\)
\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)
\(=\left(3x+1\right)^3\)
\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)
\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)
\(=\left(x+\sqrt{2}y\right)^3\)
Bài 2:
\(a,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)
\(\Leftrightarrow-x^2+8x=0\)
\(\Leftrightarrow-x\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
1)
a) = (3x+1)3
b) (x+\(\sqrt{2}\) )3
2)
a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)
b) Bài cuối bạn tự làm nhé! Mình mắc học bài
# Chúc bạn học tốt !
a ) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b ) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)
a) x3 - 6x2 + 12x - 8 = 0
( x - 2 ) 3 = 0
x - 2 = 0
x = 2
b) x3 + 9x2 + 27x + 27 = 0
( x + 3 )3 = 0
x + 3 = 0
x = -3
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
a) \(x^3+9x^2+27x+19=0\)
\(\Rightarrow x^3+x^2+8x^2+8x+19x+19=0\)
\(\Rightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2+8x+19=0\end{matrix}\right.\)
Mà \(x^2+8x+19=x^2+2.x.4+16+3=\left(x+4\right)^2+3\)
Vì \(\left(x+4\right)^2\ge0\) với mọi x
\(3>0\)
\(\Rightarrow\left(x+4\right)^2+3>0\) với mọi x
=> ( x + 4 )2 + 3 vô nghiệm
=> x + 1 = 0
=> x = -1
Vậy x = -1
b) \(\left(2x+1\right)^3+x\left(x-2\right)\left(x+2\right)-9x\left(x-2\right)^2+57=0\)
\(\Rightarrow\left(2x\right)^3+3.\left(2x\right)^2+3.2x+1+x\left(x^2-2^2\right)-9x\left(x^2-4x+4\right)+57=0\)
\(\Rightarrow8x^3+12x^2+6x+1+x^3-4x-9x^3+36x^2-36x+57=0\)
\(\Rightarrow48x^2-34x+58=0\)
\(\Rightarrow2\left(24x^2-17x+29\right)=0\)
\(\Rightarrow24x^2-17x+29=0\)
... Tới đây mình bí luôn rồi, sorry
Câu a : \(x^3+9x^2+27x+19=0\)
\(\Leftrightarrow\left(x^3+9x^2+27x+27\right)-8=0\)
\(\Leftrightarrow\left(x+3\right)^3-2^3=0\)
\(\Leftrightarrow\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+2^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Leftrightarrow x+1=0\) ( Vì : \(x^2+8x+19>0\))
\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)
Câu b : \(\left(2x+1\right)^3+x\left(x-2\right)\left(x+2\right)-9x\left(x-2\right)^2+57=0\)
\(\Leftrightarrow8x^3+12x^2+6x+1+x^3-4x-9x^3+36x^2-36x+57=0\)
\(\Leftrightarrow48x^2-34x+58=0\)
\(\Rightarrow PTVN\)
Vậy ko có giá trị của x