K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: =>x=144

b: \(\Leftrightarrow x\in\varnothing\)

c: \(\Leftrightarrow x=\pm\sqrt{5}\)

d: \(\Leftrightarrow x=\pm\sqrt{\dfrac{5}{2}}\)

e: \(\Leftrightarrow x=\pm\sqrt[4]{5}\)

1 tháng 7 2019

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

1 tháng 7 2019

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

17 tháng 7 2019

a) \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)

\(=\sqrt{75}-\sqrt{\frac{16}{3}}+\frac{9}{2}\sqrt{\frac{8}{3}}+2\sqrt{27}\)

\(=5\sqrt{3}-\frac{4}{\sqrt{3}}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+5\sqrt{3}+3\sqrt{6}+6\sqrt{3}\)

\(=-\frac{4}{\sqrt{3}}+11\sqrt{3}+3\sqrt{6}\)

\(=-\frac{4\sqrt{3}}{3}+11\sqrt{3}+3\sqrt{6}\)

b) \(\sqrt{48}-\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48}-\sqrt{\frac{16}{3}}+2\sqrt{75}-5\sqrt{\frac{4}{3}}\)

\(=4\sqrt{3}-\frac{4}{\sqrt{3}}+10\sqrt{3}-\frac{10}{\sqrt{3}}\)

\(=-\frac{4}{\sqrt{3}}-\frac{10}{\sqrt{3}}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+4\sqrt{3}+10\sqrt{3}\)

\(=-\frac{14\sqrt{3}}{3}+14\sqrt{3}\)

c)\(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)

\(=27+12\sqrt{5}+12\sqrt{5}\)

\(=27+24\sqrt{5}\)

d)\(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\sqrt{6}+2-\sqrt{3}-\sqrt{2}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)

\(=4+2\sqrt{3}-2\sqrt{3}+4\)

= 8

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

\(=\frac{14}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)

= 14

17 tháng 7 2019

a) \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)

\(=2\sqrt{2}.\left(\sqrt{3}-2\right)+9+4\sqrt{2}-2\sqrt{6}\)

\(=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}\)

= 9 (đpcm)

b) \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)

\(=\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2^{\frac{1}{2}}\left(\sqrt{2}-1\right)}\)

\(=\sqrt{2\left(\sqrt{2}-1\right)}\) (đpcm)

Bài 1: 

a: \(=\left|5-\sqrt{3}\right|-\left|\sqrt{3}-2\right|\)

\(=5-\sqrt{3}-2+\sqrt{3}=3\)

b; \(B=\dfrac{\left(2-\sqrt{3}\right)\cdot\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\cdot\sqrt{52-30\sqrt{3}}}{\sqrt{2}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\cdot\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)}{\sqrt{2}}\)

\(=\dfrac{6\sqrt{3}+10-9-5\sqrt{3}-6\sqrt{3}+10-9+5\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{20-18}{\sqrt{2}}=\sqrt{2}\)

c: \(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3+3-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=1\)

d: \(A=\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=5-1=4\)

11 tháng 8 2018

\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)

\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)

\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)

\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)

\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)

* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)

* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)

\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)

\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)

\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)

\(H=\sqrt{34+2\sqrt{161}}\)

\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

27 tháng 6 2019

Câu 4: a) ĐK: \(x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b) ĐK: \(x^2-3x+2\ge0\Leftrightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

c) Đk: \(-3\le x< 5\)

d) x + 3 và 5 - x đồng dấu. Xét hai trường hợp:

\(\left\{{}\begin{matrix}x+3\ge0\\5-x>0\left(\text{do mẫu phải khác 0}\right)\end{matrix}\right.\Leftrightarrow-3\le x< 5\)

\(\left\{{}\begin{matrix}x+3< 0\\5-x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -3\\x>5\end{matrix}\right.\) do x ko thể đồng thời thỏa mãn cả hai nên loại.

27 tháng 6 2019

Câu 1:

a) Đặt \(A=x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\)

\(A=x+\left|x+2\right|\cdot\left(x-2\right)\)

+) Với \(x\ge-2\):

\(A=x+\left(x+2\right)\left(x-2\right)=x+x^2-4\)

+) Với \(x< -2\):

\(A=x-\left(x+2\right)\left(x-2\right)=x-x^2+4\)

b) \(B=\sqrt{m^2-6m+9-2m}\)

\(B=\sqrt{m^2-8m+9}\)

Bạn xem lại đề nhé :)

c) \(C=1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)

\(C=1+\sqrt{x-1}\)

d) \(D=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(D=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)

\(D=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(D=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

+) Xét \(x\ge8\):

\(D=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

+) Xét \(4< x< 8\):

\(D=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)

Vậy....

13 tháng 8 2019

TL:

\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)

BT thỏa mãn \(\forall x\)

14 tháng 8 2019

a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)

Vậy biểu thức có nghĩa với mọi x

b) \(\sqrt{\frac{-3}{2+x}}\)

Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)