Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
a)pt vô nghiệm khi và chỉ khi:
\(\Delta'< 0\)\(\Leftrightarrow\left(2m-3\right)^2-\)\(\left(5m-6\right)\left(m-2\right)>0\Leftrightarrow-m^2+4m+21>0\Leftrightarrow m>-3\)và \(m< 7\) (xét dấu tam thức bậc hai)
b) Tương tự câu a
a/ \(x^2+2x-15< 0\Rightarrow-5< x< 3\)
TH1: \(m=-1\) ko thỏa mãn
TH2: \(m>-1\Rightarrow x\ge\frac{3}{m+1}\)
Để BPT đã cho có nghiệm thì: \(\frac{3}{m+1}< 3\)
\(\Leftrightarrow m+1>1\Rightarrow m>0\)
TH3: \(m< -1\Rightarrow x\le\frac{3}{m+1}\)
Để BPT có nghiệm \(\Rightarrow\frac{3}{m+1}>-5\)
\(\Leftrightarrow3< -5\left(m+1\right)\)
\(\Leftrightarrow5m< -8\Rightarrow m< -\frac{8}{5}\)
Vậy để BPT đã cho có nghiệm thì \(\left[{}\begin{matrix}m>0\\m< -\frac{8}{5}\end{matrix}\right.\)
b/ \(x^2-3x-4\le0\Leftrightarrow-1\le x\le4\)
Xét bpt \(\left(m-1\right)x\ge2\)
TH1: \(m=1\) ko thỏa mãn
TH2: \(m>1\Rightarrow x\ge\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow4\le\frac{2}{m-1}\)
\(\Rightarrow2\left(m-1\right)\le1\Rightarrow m\le\frac{3}{2}\)
Kết hợp điều kiện \(\Rightarrow1< m\le\frac{3}{2}\)
TH3: \(m< 1\Rightarrow x\le\frac{2}{m-1}\)
Để BPT có nghiệm \(\Rightarrow\frac{2}{m-1}\ge-1\)
\(\Leftrightarrow2\le1-m\Rightarrow m\le-1\)
Vậy để BPT đã cho có nghiệm thì: \(\left[{}\begin{matrix}m\le-1\\1< m\le\frac{3}{2}\end{matrix}\right.\)
Đặt \(t=3^x,t>0\)
Bất phương trình trở thành :
\(m.t^2+9\left(m-1\right)t+m-1>0\)
\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)
\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)
Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :
\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)
Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)
Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)
đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)
Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)
ta có \(\frac{\left(x+2\right)\left(mx+3\right)}{x-1}=0\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(mx+3\right)=0_{ }\left(1\right)\\x-1\ne0\end{cases}}\)
Phương trình có nghiệm duy nhất khi (1) có nghiệm kép hoặc (1) có 2 nghiệm phân biệt trong đó một nghiệm là x=1
th1: (1) có nghiệm kép
\(\Rightarrow m=\frac{3}{2}\)
th2: (1) có 1 nghiệm x=1
\(\Rightarrow m=-3\)