Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
a)
ƯCLN (a, b) = 9 => a = 9p ; b = 9q (q > p > 0,UCLN(p,q) = 1)
Ta có: a + b = 72
=> 9p + 9q = 72
=> 9.(p + q) = 72
=> p + q = 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Mà q > p
=> \(\left(p;q\right)\in\left\{\left(1;7\right),\left(2;6\right);\left(3,5\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(9;63\right),\left(18;54\right),\left(27;45\right)\right\}\)
b)
ƯCLN (a, b) = 2 => a = 2m; b = 2n ( m > n > 0; UCLN(m;n) = 1)
Ta có: a.b = 252
=> 2m.2n = 252
=> 4mn = 252
=> m.n = 63 = 1.63 = 3.21 = 7.9
Mà m < n
\(\Rightarrow\left(m;n\right)\in\left\{\left(1;63\right),\left(3,21\right),\left(7,9\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(2;126\right),\left(6;42\right),\left(14,18\right)\right\}\)
a.ƯCLN(a,b)=12 ⟹a=12.m
b=12.n với m,n N* và (m,n)=1
a+b=120⟹12.m+12.n=120⟹12.(m+n)=120
⟹m+n=120:12=10
m 1 9 3 7
n 9 1 7 3
a 12 108 36 84
b 12 108 36 84
ta có \(UCLN\left(a,b\right)\le a,b\)\(\Rightarrow UCLN\left(a,b\right)\le a+b\) điều này mâu thuẫn với giả thiết
\(\hept{\begin{cases}a+b=8\\UCLN\left(a,b\right)=9\end{cases}}\) vậy không tồn tại hai số a,b thỏa mãn
b. ta có \(UCLN\left(a,b\right)=6\Rightarrow\hept{\begin{cases}a=6k\\b=6h\end{cases}}\)với h,k nguyên tố cùng nhau
\(a.b=36h.k=720\Leftrightarrow hk=20=1.2^2.5\) nên \(\left(h,k\right)=\left(1,20\right)\text{ hoặc (4,5)}\)
vậy tương ứng ta có hai bộ số là 6,120 và 24,30 thỏa mãn đề bài
a) Vì ƯCLN(a,b) =9 suy ra a=9k;b=9t (k;t là số tự nhiên ƯCLN của k;t là 1
Do đó a + b=9k+9t=9(k+t)
Suy ra k+t=72:9=8
Mà k,t là số t.nhiên và k>t nên (k;t)thuộc tập hợp {(0;8);(1;7);(2;6);(3;5);(4;4)}(bạn cho ngược lại nhé
mặt khác ƯCLN(k;t)=1 nên k=7;t=8 or k=3;t=5 sau đó ta tìm được a,b
b)tương tự nhé bạn
kq:a=60;b=5
or a=15;b=20
Câu a giải rồi thì đến câu b
a.b=300
UCLN(a,b)=5
=>Đặt a=5m;b=5n (m và n là hai số nguyên tố cùng nhau m\(\ge\)n)
=>a.b=5m.5n=300
=>m.n=12
Ta có bảng sau:
m | n | a | b |
12 | 1 | 60 | 5 |
4 | 3 | 20 | 15 |
1. Ta có : a : 153 dư 110\(\Rightarrow\)a+110\(⋮\)153
a: 117 dư 110\(\Rightarrow\)a+110\(⋮\)117
\(\Rightarrow\)a+110\(⋮\)153;117\(\Rightarrow\)a+110\(\in\)BC(153;117)
BCNN(153;117)=1989 và 2000<a<5000\(\Rightarrow\)2110<a+110<5110\(\Rightarrow\)a+110\(\in\){3978}\(\Rightarrow\)a=3978-110=3868
a+b=72;UCLN(a;b)=9
Ta có : ƯCLN(a;b)=9\(\Rightarrow\)a=9k;b=9m (k,m nguyên tố cùng nhau)
\(\Rightarrow\)9k+9m=72\(\Rightarrow\)k+m=8 mà k,m nguyên tố cùng nhau
\(\Rightarrow\)k=1;m=7\(\Rightarrow\)a=9;b=63
k=7;m=1\(\Rightarrow\)a=63;b=9
k=3;m=5\(\Rightarrow\)a=27;b=45
k=5;m=3\(\Rightarrow\)a=45;b=27
Đặt hai số cần tìm là \(a,b\)\(300< a\le b< 400\).
\(ƯCLN\left(a,b\right)=28\)nên đặt \(a=28m,b=28n\)khi đó \(10< m\le n< 15,\left(m,n\right)=1\).
Ta có:
\(b-a=28n-28m=28\left(n-m\right)=84\Leftrightarrow n-m=3\)
Kết hợp với điều kiện suy ra \(\hept{\begin{cases}m=11\\n=14\end{cases}}\Rightarrow\hept{\begin{cases}a=308\\b=