Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(...\Leftrightarrow\dfrac{x+y+1}{6xy}=\dfrac{1}{6}\Leftrightarrow x+y+1=xy\Leftrightarrow\left(x-1\right)\left(y-1\right)=2\Leftrightarrow\left[{}\begin{matrix}x=3;y=2\\x=2;y=3\end{matrix}\right.\)
9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0
<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0
<=> (3x + y - 1)2 = 37 - 2(y + 1)2
Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0
=> (y + 1)2 \(\le\)37/2
Do y nguyên và (y + 1)2 là số chính phương
=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}
=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}
Lập bảng
y + 1 | 0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 |
y | -1 | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 |
Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2
<=> (3x - 2)2 = 37
Do x nguyên và (3x - 2)2 là số chính phương
mà 37 là số nguyên tố => ko có giá trị y tm
.... (tự thay y vào)
bài trc sai
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
với x;y>0 ta có:\(\)
\(8>=x^3+y^3+6xy\Rightarrow8+1=9>=x^3+y^3+1+6xy>=3\sqrt{x^3y^3\cdot1}+6xy=3xy+6xy=9xy\) (bđt cosi)
\(\Rightarrow9>=9xy\Rightarrow1>=xy\Rightarrow xy< =1\)
\(A=\frac{1}{x}+\frac{1}{y}>=2\sqrt{\frac{1}{x}\cdot\frac{1}{y}}=\frac{2}{xy}>=\frac{2}{1}=2\)(bđt cosi)
dấu = xảy ra khi x=y=1
vậy min A là 2 khi x=y=1
Tu de bai suy ra 2y+2x=xy<=>...<=>y(2-x)= -2x<=>y=2x/(x-2)<=>y=(2x-4+4)/(x-2)<=>y=2+4/(x-2)
vi x la so nguyen Dưỡng nen x-2 la so nguyen duong va la ước cua 4 => x-2 =1 hoặc x-2= 4 => x=3 hoac x=6
Voi x=3 => y= 6
voi x=6=> y=3
vay cac cap so nguyen duong (x;y) can tim la (3;6); (6;3)
Sử dụng phương pháp đưa về dạng tích:
\(x^3+y^3=6xy+5\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-6xy=5\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y+2\right)=5\)
\(\Leftrightarrow\left(x+y\right)^3+8-3xy\left(x+y+2\right)=13\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+y\right)^2-2\left(x+y\right)+4-3xy\right]=13\)
Từ đây ta có: \(x+y+2\) và \(\left(x+y\right)^2-2\left(x+y\right)+4-3xy\) là 2 ước số của 13.
Với \(\left\{{}\begin{matrix}x+y+2=1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\xy=-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(1,-2\right);\left(-2,1\right)\)
Với \(\left\{{}\begin{matrix}x+y+2=13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=11\\xy=34\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)
Với \(\left\{{}\begin{matrix}x+y+2=-1\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-3\\xy=\dfrac{32}{3}\end{matrix}\right.\left(loại\right)\)
Với \(\left\{{}\begin{matrix}x+y+2=-13\\\left(x+y\right)^2-2\left(x+y\right)+4-3xy=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-15\\xy=\dfrac{260}{3}\left(loại\right)\end{matrix}\right.\)
Vậy...