Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{9}.27^n=3^n\)
\(\Rightarrow\frac{3^n}{27^n}=\frac{1}{9}\)
\(\Rightarrow\left(\frac{3}{27}\right)^n=\frac{1}{9}\)
\(\Rightarrow\left(\frac{1}{9}\right)^n=\frac{1}{9}\)
\(\Rightarrow n=1\)
2) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=2^n.3^2-2^n.2^2+3^n-2^n\)
\(=2^n.9+2^n.4+3^n-2^n\)
\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)
1) \(x+2y=3xy+3\)
\(\Rightarrow3xy+3-x-2y=0\)
\(\Rightarrow3xy-x+3-2y=0\)
\(\Rightarrow18xy-6x+18-12y=0\)
\(\Rightarrow6x\left(3y-1\right)+4-12y=-14\)
\(\Rightarrow6x\left(3y-1\right)-4\left(3y-1\right)=-14\)
\(\Rightarrow\left(6x-4\right)\left(3x-1\right)=-14\)
Bạn tự phân tích ra rồi tìm x, y nhé!
a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)
\(=2x^2-4x+5-x^2+6+2x-3\)
\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)
\(=x^2-2x+8\)
Hệ số tự do của đa thức F(x) là: 8
Hệ số bậc 1 của đa thức F(x) là: -2
b) \(F\left(x\right)=x^2-2x+8\); \(G\left(x\right)=-x^2-2x-9\)
+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)
\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)
Vậy \(M\left(x\right)=-4x-1\)
+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)
\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)
Vậy \(N\left(x\right)=2x^2+17\)
c)
+) M(x) có nghiệm khị và chỉ khi M(x) = 0
\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)
Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)
+) N(x) có nghiệm khị và chỉ khi N(x) = 0
\(\Leftrightarrow2x^2+17=0\)
Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)
Nên N(x) vô nghiệm
d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)
\(\Leftrightarrow x=\frac{11}{2}\)
Vậy \(x=\frac{11}{2}\)thì F(x) = x2 - 3
B1: A=|x-13|+|x-2014|=|x-13|+|2014-x| \(\ge\) |x-13+2014-x| = 2001
Dấu "=" xảy ra khi \(\left(x-13\right)\left(2014-x\right)\ge0\Rightarrow13\le x\le2014\)
Vậy GTNN của A = 2001 khi 13\(\le\)x\(\le\)2014
B2
a, 3n+2-2n+2+3n-2n
=3n.32-2n.22+3n-2n
=3n(9+1)-2n(4+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1) chia hết cho 10
b, \(\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\Rightarrow x\in\left\{6;7;8\right\}}\)
Bài 10:
a) (1/3)n = 1/81
=> (1/3)n = (1/3)4
=> n = 4
b) -512/343 = (-8/7)n
=> (-8/7)3 = (-8/7)n
=> 3 = n (hay n = 3)
c) (-3/4)n = 81/256
=> (-3/4)n = (-3/4)4
=> n = 4
d) 64/(-2)n = (-2)3
=> 64/(-2)n = -8
=> (-2)n = -8
=> (-2)n = (-2)3
=> n = 3
Bài 11: (không có y để tìm nhé)
a) (0,4x - 1,3)2 = 5,29
=> (0,4x - 1,3)2 = (2,3)2
=> 0,4x - 1,3 = 2,3
=> 0,4x = 3,6
=> x = 9
b) (3/5 - 2/3x)3 = -64/125
=> (3/5 - 2/3x)3 = (-4/5)3
=> 3/5 - 2/3x = -4/5
=> 2/3x = 7/5
=> x = 21/10
3n+2 - 3n+1 + 3n = 243.7
3n.( 32 - 3 + 1) = 243.7
3n . 7 = 243.7
3n = 243. 7 : 7
3n = 243
3n = 35
n= 5