K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Đặt t = 111...1 + 7

(n số 1)

=> a.b + 4 = (t + 2).(t - 2) + 4

= t2 - 4 + 4

= t2, là số chính phương (đpcm)

20 tháng 11 2016

thank you bn nha

6 tháng 8 2018

A = 111...1000...0 + 111...1 - 222...2

     (n cs 1)(n cs 0)   (n cs 1)  (n cs 2)

\(A=111...1\cdot10^n+111...1-222...2\)

        (n cs 1)                       ( n cs 1 )      ( n cs 2 )

Đặt   K = 111...1  ( n cs 1 )   => 9K + 1 = 10^n

=> A = K( 9k + 1 ) + K - 2K

        = 9K^2 + K + K - 2K

        = 9K^2   = (3K)^2     

=> A là một số chính phương

B = 111...1000...0 + 111...1 +  444...4 + 1

    (n cs 1)(n cs 0)   (n cs 1)    (n cs 4)

\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)

                ( n cs 1 )                 ( n cs 1 )         ( n cs 4 )

Đặt   K = 111...1   ( n cs 1 )         => 9K + 1 = 10^n

=> B = K( 9K + 1 ) + K + 4K + 1

         = 9K^2 + 6K + 1

         = ( 3K + 1 ) ^2

=> B là một số chính phương

7 tháng 3 2020

Câu 1 :

Đặt \(n^2+2n+4=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+3=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=3\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=3\)

TH1 \(\hept{\begin{cases}a+n+1=3\\a-n-1=1\end{cases}}\)

TH2 : \(\hept{\begin{cases}a+n+1=-3\\a-n-1=-1\end{cases}}\)

TH3 : \(\hept{\begin{cases}a+n+1=-1\\a-n-1=-3\end{cases}}\)

TH4 : \(\hept{\begin{cases}a+n+1=1\\a-n-1=3\end{cases}}\)

Bạn tính ra trong từng TH nhé !

7 tháng 3 2020

Câu 1 :

Giả sử : \(n^2+2n+4=k^2\left(k\inℤ\right)\)

\(\Rightarrow k^2-\left(n^2+2n+1\right)=3\)

\(\Rightarrow k^2-\left(n+1\right)^2=3\)

\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=3\)

Do k + n + 1 > k - n - 1 ( với k;n thuộc Z )

\(\Rightarrow\hept{\begin{cases}k+n+1=3\\k-n-1=1\end{cases}}\Rightarrow\hept{\begin{cases}k+n=2\\k-n=2\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=0\end{cases}}\) 

Vậy n = 0 

26 tháng 7 2018

=\(\frac{44}{13}\)

21 tháng 7 2016

trả lời chỉ để lấy tích thời mọi người tích giùm hihi

12 tháng 12 2015

 

a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1

                                                       = 111...11(n).(10n-1)  +6.111..11(n) +1 

                                                      = 333...332(n) +2.333...33(n) +1  = ( 333.....3(n)+1)2   dpcm

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

 

4 tháng 1 2016

:)

:)