Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = 111...1 + 7
(n số 1)
=> a.b + 4 = (t + 2).(t - 2) + 4
= t2 - 4 + 4
= t2, là số chính phương (đpcm)
A = 111...1000...0 + 111...1 - 222...2
(n cs 1)(n cs 0) (n cs 1) (n cs 2)
\(A=111...1\cdot10^n+111...1-222...2\)
(n cs 1) ( n cs 1 ) ( n cs 2 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> A = K( 9k + 1 ) + K - 2K
= 9K^2 + K + K - 2K
= 9K^2 = (3K)^2
=> A là một số chính phương
B = 111...1000...0 + 111...1 + 444...4 + 1
(n cs 1)(n cs 0) (n cs 1) (n cs 4)
\(\Rightarrow B=111...1\cdot10^n+111...1+444...4+1\)
( n cs 1 ) ( n cs 1 ) ( n cs 4 )
Đặt K = 111...1 ( n cs 1 ) => 9K + 1 = 10^n
=> B = K( 9K + 1 ) + K + 4K + 1
= 9K^2 + 6K + 1
= ( 3K + 1 ) ^2
=> B là một số chính phương
Câu 1 :
Đặt \(n^2+2n+4=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+3=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=3\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=3\)
TH1 \(\hept{\begin{cases}a+n+1=3\\a-n-1=1\end{cases}}\)
TH2 : \(\hept{\begin{cases}a+n+1=-3\\a-n-1=-1\end{cases}}\)
TH3 : \(\hept{\begin{cases}a+n+1=-1\\a-n-1=-3\end{cases}}\)
TH4 : \(\hept{\begin{cases}a+n+1=1\\a-n-1=3\end{cases}}\)
Bạn tính ra trong từng TH nhé !
Câu 1 :
Giả sử : \(n^2+2n+4=k^2\left(k\inℤ\right)\)
\(\Rightarrow k^2-\left(n^2+2n+1\right)=3\)
\(\Rightarrow k^2-\left(n+1\right)^2=3\)
\(\Rightarrow\left(k+n+1\right)\left(k-n-1\right)=3\)
Do k + n + 1 > k - n - 1 ( với k;n thuộc Z )
\(\Rightarrow\hept{\begin{cases}k+n+1=3\\k-n-1=1\end{cases}}\Rightarrow\hept{\begin{cases}k+n=2\\k-n=2\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=0\end{cases}}\)
Vậy n = 0
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương