K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

1.Để  đường thẳng  \(y=\left(m-1\right)x+3\) song song với đường thẳng \(y=2x+1\)

thì \(m-1=2\Rightarrow m=3\)

2. a. Với \(m=-2\Rightarrow\)\(\hept{\begin{cases}-2x-2y=3\\3x-2y=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-\frac{17}{10}\end{cases}}\)

b. Với \(m=0\Rightarrow\hept{\begin{cases}-2y=3\\3x=4\end{cases}\Rightarrow\hept{\begin{cases}y=-\frac{3}{2}\\x=\frac{4}{3}\end{cases}\left(l\right)}}\)

Với \(m\ne0\Rightarrow\hept{\begin{cases}m^2x-2my=3m\\6x+2my=8\end{cases}\Rightarrow\left(m^2+6\right)x=3m+8}\)

\(\Rightarrow x=\frac{3m+8}{m^2+6}\)\(\Rightarrow y=\frac{mx-3}{2}=\frac{m\left(3m+8\right)-3\left(m^2+6\right)}{2\left(m^2+6\right)}=\frac{4m-9}{m^2+6}\)

Để \(x+y=5\Rightarrow\frac{3m+8}{m^2+6}+\frac{4m-9}{m^2+6}=5\Rightarrow7m-1=5m^2+30\)

\(\Rightarrow-5m^2+7m-31=0\)

Ta thấy phương trình vô nghiệm nên không tồn tại m để \(x+y=5\)

DD
22 tháng 11 2021

a) \(\hept{\begin{cases}3x+2y=4\\2x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+2y=4\\4x-2y=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=2x-m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=\frac{8-3m}{7}\end{cases}}\)

Để phương trình có nghiệm \(\left(x,y\right)\)với \(x< 1,y< 1\)thì

\(\hept{\begin{cases}\frac{2m+4}{7}< 1\\\frac{8-3m}{7}< 1\end{cases}}\Leftrightarrow\hept{\begin{cases}2m< 3\\3m>1\end{cases}}\Leftrightarrow\frac{1}{3}< m< \frac{2}{3}\).

b) Để ba đường thẳng đã cho đồng quy thì: 

\(\frac{2m+4}{7}+2.\frac{8-3m}{7}=3\Leftrightarrow m=-\frac{1}{4}\).

29 tháng 2 2020

\(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\)

a, Với \(m=3\) ta có:

\(\hept{\begin{cases}x+y=2\\2x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2\left(2-y\right)+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2y=4\left(1\right)\\2x+my=5\left(2\right)\end{cases}}\)

Ta lấy \(\left(1\right)-\left(2\right)\) ta được: \(y\left(2-m\right)=-1\)

Với \(m\ne2\) hpt có nghiệm duy nhất là: \(\hept{\begin{cases}y=-\frac{1}{2-m}\\x=2-\frac{-1}{2-m}=\frac{5-2m}{2-m}\end{cases}}\)

Ta có: \(\hept{\begin{cases}y>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2-m}>0\\\frac{5-2m}{2-m}< 0\end{cases}}\) \(\Leftrightarrow2-m< 0\) hoặc \(\orbr{\begin{cases}5-2m>0.hoac.2-m< 0\\5-2m< 0.hoac.2-m>0\end{cases}}\)

\(\Leftrightarrow m>2\) hoặc \(\orbr{\begin{cases}2< m< \frac{5}{2}\\m< 2,m>\frac{5}{2}\end{cases}}\Leftrightarrow2< m< \frac{5}{2}\)

Vậy .............

29 tháng 2 2020

Bạn Băng !

<=> \(2-m< 0\) và \(\orbr{\begin{cases}...\\...\end{cases}}\)

 ( không phải là " hoặc " )

DD
22 tháng 11 2021

\(\hept{\begin{cases}x+2y=3m+3\\4x-3y=m-10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)

\(x^2-y^2=\left(m-1\right)^2-\left(m+2\right)^2=-6m-3=m-1\)

\(\Leftrightarrow m=-\frac{2}{7}\).