Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quy đồng lên thì dc
(ax^2-a^2a+b^2*x-b^2*c)=x^2-cx-dx+cd
<=>x^2(a-1)+x(b^2+c+d)-(a^2*d+b^2c+cd)=0
đen ta =(a-1)^2+4(b^2+c+d)(a^2a+b^2c+cd)
giải ra đen ta >0 là dc
Đặt \(t=ax^2+bx+c\).(*)
ta có: \(at^2+bt+c=x\Leftrightarrow at^2+bt+c-x=0\)
\(\Delta=b^2-4a\left(c-x\right)=b^2-4ac+4ax\)
Để phương trình (*) vô nghiệm thì \(\Delta< 0\Leftrightarrow b^2-4ac+4ax< 0\Leftrightarrow x< -\dfrac{b^2-4ac}{4a}\)(1)
Đỉnh của hàm số (*) là: \(I\left(\dfrac{-b}{2a};-\dfrac{b^2-4ac}{4a}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge-\dfrac{b^2-4ac}{4a}khia>0\\x\le-\dfrac{b^2-4ac}{4a}khia< 0\end{matrix}\right.\)(2)
Từ (1) và (2), ta suy ra \(x< -\dfrac{b^2-4ac}{4a}\)khi a<0
Vậy phương trình (*) vô nghiệm khi a<0
Mình làm ko biết đúng ko, mong mọi người góp ý
Giả sử không có BĐT thức nào có nghiệm. Khi đó:
\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)
\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)
\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)
Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)
\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí
Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm
a) ta có : \(\left(P\right)y=ax^2+bx+c\) đi qua 3 điểm \(A\left(0;-1\right);\left(1;-1\right)c\left(-1;1\right)\)
nên ta có hệ phương trình 3 ẩn sau : \(\left\{{}\begin{matrix}0a+0b+b=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\)
giải phương trình ta được : \(\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) vậy \(a=1;b=c=-1\)
b) quan sát phương trình ta thấy hệ số : \(a=-1;b=3;c=2\)
vậy \(a=-1;b=3;c=2\)
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
Mọi người đâu hết zùi, giúp mk với!!!
sao phải lm hì