K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 10 2019

Đặt \(f\left(x\right)=ax+b\Rightarrow\left\{{}\begin{matrix}f\left(2x-1\right)=a\left(2x-1\right)+b=2ax-a+b\\f\left(2x+1\right)=a\left(2x+1\right)+b=2ax+a+b\end{matrix}\right.\)

\(f\left(2x-1\right)+f\left(2x+1\right)-f\left(x\right)=x+3\)

\(\Leftrightarrow2ax-a+b+2ax+a+b-ax-b=x+3\)

\(\Leftrightarrow3ax-x+b-3=0\)

\(\Leftrightarrow\left(3a-1\right)x+\left(b-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-1=0\\b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=\frac{1}{3}x+3\)

NV
20 tháng 6 2019

Đề bài thiếu rồi bạn, cần hạn chế hàm \(f\left(x\right)\) vì hàm \(f\left(x\right)\) bất kì thì miền xác định D của nó cũng bất kì.

Nếu hàm \(f\left(x\right)\) có miền xác định ko đối xứng (ví dụ \(y=\sqrt{x}\)) thì không thể tách thành 2 hàm chẵn lẻ vì \(f\left(x\right)=g_1\left(x\right)+g_2\left(x\right)\) thì đương nhiên \(g_1\left(x\right)\)\(g_2\left(x\right)\) cùng miền xác định với \(f\left(x\right)\). Mà một hàm số có miền xác định không đối xứng thì không thể là hàm chẵn hay hàm lẻ.

NV
19 tháng 6 2020

\(a=2;b=1\Rightarrow c=\sqrt{3}\)

\(\Rightarrow F_1F_2=2c=2\sqrt{3}\)

\(MF_1\perp MF_2\Rightarrow\Delta MF_1F_2\) vuông tại M

\(\Rightarrow MF_1^2+MF_2^2=F_1F_2^2=12\) (Pitago)

Ta có: \(\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1+MF_2=2a=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\\left(MF_1+MF_2\right)^2=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}MF_1^2+MF_2^2=12\\MF_1^2+MF_2^2+2MF_1MF_2=16\end{matrix}\right.\)

\(\Rightarrow MF_1.MF_2=2\)

\(\Rightarrow S_{MF_1F_2}=\frac{1}{2}MF_1.MF_2=1\)