Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhia- cốp -xki ta có
\(M=\left(\sqrt{a}+\sqrt{b}\right)^2\le\left(1^2+1^2\right)\left(a+b\right)\le2\)
Vậy maxM =2 \(\Leftrightarrow a=b=\frac{1}{2}\)
cộng 4 biểu thức lại ta có:
\(\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)+\left(d-2\sqrt{da}+a\right)+a+b+c+d\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+\left(\sqrt{d}-\sqrt{a}\right)^2+a+b+c+d>0\)
g/s 4 biểu thức đó đều âm=>tổng của chúng âm
=>1 trong 4 biểu thức có 1 biểu thức là số dương
Ta có : \(x=2a+b-2\sqrt{cd};y=2b+c-2\sqrt{ad};z=2c+d-2\sqrt{ab};t=2d+a-2\sqrt{bc}\)
\(\Rightarrow x+z=2a+b-2\sqrt{cd}+2c+d-2\sqrt{ab}=\left(a-2\sqrt{ab}+b\right)+\left(c-2\sqrt{cd}+d\right)+a+c=\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{c}-\sqrt{d}\right)^2+a+c>0\)
\(\Rightarrow x+z>0\) => Một trong hai số x và z phải có ít nhất một số dương (1) . Thật vậy , giả sử x<0 , z<0 => x+z<0 => vô lí.
Tương tự ta cũng có : \(y+t=\left(\sqrt{a}-\sqrt{d}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+b+d>0\) \(\Rightarrow y+t>0\) => Một trong hai số y và t phải có ít nhất một số dương (2)
Từ (1) và (2) ta có điều phải chứng minh.
1) Áp dụng bất đẳng thức \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\sqrt{\frac{a+b}{2}}\) (Bạn có thể chứng minh bằng biến đổi tương đương)
Ta có : \(\frac{\sqrt{1991}+\sqrt{1993}}{2}\le\sqrt{\frac{1991+1993}{2}}\)
\(\Leftrightarrow\sqrt{1991}+\sqrt{1993}\le2\sqrt{1992}\)
2) Đề thiếu điều kiện
3) Mình sửa lại đề chút xíu nhé :)
Áp dụng bđt Bunhiacopxki , ta có : \(\left(\sqrt{c}.\sqrt{a-c}+\sqrt{b-c}.\sqrt{c}\right)^2\le\left(c+b-c\right)\left(a-c+c\right)\)
\(\Rightarrow\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le ab\)
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
nhấn vào đây nha: [Đại số] Một bài toán chứng minh sự tồn tại. | HOCMAI Forum - Cộng đồng học sinh Việt Nam
hì hì ok nha!! 7655685795325325454364561253454364565464575678568788978676
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
1. ĐKXĐ: \(-1\le x\le1\)
\(A^2=1-x+1+x+2\sqrt{\left(1-x\right)\left(1+x\right)}=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\ge2\)
\(\Rightarrow A\ge\sqrt{2}\). Vậy min A = \(\sqrt{2}\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=2+2\sqrt{\left(1-x\right)\left(1+x\right)}\le2+1-x+1+x=4\)
\(\Rightarrow A\le2\). Vậy max A = 2\(\Leftrightarrow x=0\)(thỏa mãn)