K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

5 tháng 8 2019

MN ƠI GIÚP E MAI E ĐI HOK RỒ

5 tháng 8 2019

GIÚP E MN OEWI

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)