Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, Ta có : \(A=\frac{x^2-2+1995}{x^2}=\frac{x^2}{x^2}-\frac{2+1995}{x^2}=1-\frac{1997}{x^2}\)
\(A\text{ đạt GTNN khi }\frac{1997}{x^2}\text{ đạt GTLN}\)
\(\Rightarrow\text{ }x^2\text{ nhỏ nhất }\left(x\ne0\right)\) Mà \(x^2\ge0\text{ }\Rightarrow\text{ }x^2=1\text{ }\Rightarrow\text{ }x\in\left\{\pm1\right\}\)
\(\Rightarrow\text{ Min A }=1-\frac{1997}{1}=1-1997=-1996\)
a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì: \(\left(x+1\right)^2\ge0\) , với mọi x
=> \(\left(x+1\right)^2+1\ge1\)
Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)
b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)
Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x
=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)
c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)
Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x
=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)
Ta có:
\(A=3x^2+2x\)
\(\Leftrightarrow\)\(A=3\left(x^2+\frac{2}{3}x\right)\)
\(\Leftrightarrow\)\(A=3\left(x^2+2\cdot x\cdot\frac{1}{3}+\frac{1}{9}\right)-\frac{1}{9}\cdot3\)
\(\Leftrightarrow\)\(A=3\left(x+\frac{1}{3}\right)^2-\frac{1}{3}\)
DO \(\left(x+\frac{1}{3}\right)^2\ge0\forall x\)nên \(A\ge-\frac{1}{3}\)
Dấu bằng xảy ra khi:
\(\left(x+\frac{1}{3}\right)^2=0\)\(\Leftrightarrow\)\(x+\frac{1}{3}=0\)\(\Leftrightarrow\)\(x=-\frac{1}{3}\)
Vậy.......
1. <=> \(\left(3x+2\right)^3-\left(\left(3x\right)^3+2^3\right)=0\)
<=> \(\left(\left(3x\right)^3+2^3+3\left(3x+2\right).3x.2\right)-\left(\left(3x\right)^3+2^3\right)=0\)
<=>3 (3x + 2) . 3x.2 = 0
<=> (3x + 2 ) . x = 0
<=> x = -2/3 hoặc x = 0
2. Tương tự
1
\(\left(3x+2\right)^3-\left[\left(3x\right)^3+2^3\right]=0\)
\(\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot2+3\cdot3x\cdot2^2+2^3-\left(3x\right)^3-2^3=0\)
\(54x^2+36x=0\)
\(18x\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x=0\\3x+2=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-2}{3}\end{cases}}\)
2
\(\left(2x+1\right)^3-\left[\left(2x\right)^3-1^3\right]=0\)
\(\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3-\left(2x\right)^3-1^3=0\)
\(12x^2+6x=0\)
\(6x\left(2x+1\right)=0\)
\(\orbr{\begin{cases}x=0\\2x+1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\end{cases}}\)
\(A=\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2018\)
\(=\left(2x^2-3x\right)^2-1+2018\)
\(=\left(2x^2-3x\right)^2+2017\ge2017\)
\(minA=2017\Leftrightarrow2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)