Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))
Áp dụng ta có :
\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)
\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)
vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)
\(a.A=2x^2+6x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+20\)
\(A=\left(2x+\frac{3}{2}\right)^2+\frac{71}{4}\ge\frac{71}{4}\)
Vậy MinA = \(\frac{71}{4}\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow x=-\frac{3}{4}\)
do \(|^{ }_{ }x+5|^{ }_{ }\ge x+5\)
\(\Rightarrow|^{ }_{ }x+5|^{ }_{ }+2-x\ge x+5+2-x\)
\(\Rightarrow A\ge7\)
\(\Rightarrow\)giá trị nhỏ nhất của A=7
Có I x + 5 I \(\ge\) 0 với mọi x
\(\Rightarrow\)I x + 5 I + 2 - x \(\ge\) 2 - x với mọi x
Dấu " = " xảy ra \(\Leftrightarrow\) I x + 5 I = 0
\(\Rightarrow\) x = - 5
Vậy A đạt gtnn là 2 - x khi x = -5
Mình ko chắc có đúng ko nên ai thấy lời giải của mk sai thì góp ý nha
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
\(A=\frac{2x-3}{3x+2}=\frac{1}{3}.\frac{3\left(2x-3\right)}{3x+2}=\frac{1}{3}.\frac{6x-9}{3x+2}=\frac{1}{3}.\frac{6x+4-13}{3x+2}=\frac{2}{3}-\frac{13}{3\left(3x+2\right)}\)
\(A\)đạt giá trị lớn nhất khi \(\frac{13}{3\left(3x+2\right)}\)đạt giá trị nhỏ nhất suy ra \(3\left(3x+2\right)\)đạt giá trị nguyên âm lớn nhất (do \(x\)nguyên)
- \(3\left(3x+2\right)=-1\Leftrightarrow x=-\frac{7}{9}\)(loại)
- \(3\left(3x+2\right)=-2\Leftrightarrow x=-\frac{8}{9}\)(loại)
- \(3\left(3x+2\right)=-3\Leftrightarrow x=-1\)(thỏa mãn)
Vậy \(x=-1\)thì \(A\)đạt giá trị lớn nhất.
\(A\)đạt giá trị nhỏ nhất khi \(\frac{13}{3\left(3x+2\right)}\)đạt giá trị lớn nhất suy ra \(3\left(3x+2\right)\)đạt giá trị nguyên dương nhỏ nhất (do \(x\)nguyên)
Xét tương tự như trên thu được \(x=0\)thì \(A\)đạt giá trị nhỏ nhất.
b)
Vì (3x+12)^2 luôn > hoặc = 0 với mọi x
=> (3x+12)^2-100> hoặc =0 -100
Vậy GTNN của B =-100
Dấu "=" xảy ra khi 3x+12=0
3x=-12
x=-4