Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 21000 = 24.250 = .....6 (có chữ số tận cùng là 6)
b) 4161 = ....4 (có chữ số tận cùng là 4)
2)
a) ta có :
n+3 chia hết cho n-1
suy ra : n-1+4 chia hết cho n-1
n-1 chia hết cho n-1
suy ra : 4 chia hết cho n-1
nên n-1 thuộc Ư(4)
Ư(4)=
ta có bảng
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
b)ta có
4n+3 chia hết cho 2n+1 (1)
mà 2(2n+1) chia hết cho 2n+1 (2)
từ (1) và (2)
suy ra :
(4n+3)-(4n+1) chia hết cho 2n+1
suy ra :1chia hết cho 2n+1
suy ra : 2n+1 thuộc Ư(1)
Ư(1)= {1}
ta có
2n+1=1
2n=1-1=0
n=0
Bài 2 :
a) Vì ƯCLN(a,b)=16 nên ta có : \(\hept{\begin{cases}a⋮16\\b⋮16\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=16m\\b=16n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà a+b=128
\(\Rightarrow\)16m+16n=128
\(\Rightarrow\)16(m+n)=128
\(\Rightarrow\)m+n=8
Vì ƯCLN(m,n)=1 và m>n nê ta có bảng sau :
m 7 5
n 1 3
a 112 80
b 16 48
Vậy (a;b)\(\in\){(112;16):(80;48)}
b) Gọi ƯCLN(2n+1,6n+1) là d (d\(\in\)N*)
Vì ƯLN(2n+1,6n+1)=d nên ta có : 2n+1\(⋮\)d và 6n+1
\(\Rightarrow\)2n+1-6n+1\(⋮\)d
\(\Rightarrow\)6(2n+1)-2(6n+1)\(⋮\)d
\(\Rightarrow\)12n+6-12n+2\(⋮\)d
\(\Rightarrow\)4\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(4)={1;2;4}
Mà 2n+1 là số lẻ
\(\Rightarrow\)d=1
\(\Rightarrow\)2n+1 và 6n+1 là 2 số nguyên tố cùng nhau
Vậy 2n+1 và 6n+1 là 2 số nguyên tố cùng nhau.
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
2.Gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
Vậy _________________