K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)

Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)

Với \(x\ge2\) ta có:

\(n^5+n^4+1\)

\(=n^5-n^2+n^4-n+n^2+n+1\)

\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)

Vậy \(n=1\)

31 tháng 3 2020

Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT

Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT

Với \(n\ge2\) ta có:

\(A=n^8+n+1\)

\(=\left(n^8-n^2\right)+n^2+n+1\)

\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)

\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)

\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)

Vậy \(n=1\)

13 tháng 7 2016

ta có:

\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\) 

=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3

2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)

=> n+2 chia hết cho 3

=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.

Ta thấy

- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2

- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p

Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2

=> p^2 không chia hết cho 2 nên p không chia hết cho 2

=> p^3 không chia hết cho 2

Vậy p^3 +2 là số nguyên tố

16 tháng 11 2019

mình thấy hơi khó

30 tháng 12 2018

Giả sử n\(\ge\)3 thì \(2^n+1\)và 2\(2^n-1\) ko chia hết cho 3 vì là số nguyên tố .

Ta có \(2^n+1;2^n;2^n-1\)là 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết cho 3 mà \(2^n+1\)và \(2^n-1\)ko chia hết cho 3 nên 2chia hết cho 3 . Vô lý vậy n<3 . Từ đó thế n=2 , n=1 , n=0 vào rồi thử xem thỏa mãn hay ko rồi ra 

13 tháng 11 2017

Câu hỏi tương tự nha

13 tháng 11 2017

1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn 
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau