K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

Ta có công thức:  \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a 

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\) 

Vậy...(làm hơi tắt, chắc bn hiểu dc)

8 tháng 3 2018

ok,

thanks you,

mk sẽ cố hiểu

17 tháng 12 2018

toán tuổi thơ 2 số 190

2 tháng 4 2018

\(\frac{a}{b+c}>\frac{a}{a+b+c},\frac{b}{b+c}>\frac{b}{b+c+a},\frac{c}{c+a}>\frac{c}{c+a+b}\)

\(\Rightarrow A>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c},\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{b+a}{b+c+a},\frac{c}{a+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{c+a+b}\)

\(\Rightarrow A< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{c+a+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Vậy \(1< A< 2\Rightarrow A\)không phải là một số nguyên dương

2 tháng 4 2018

bài này mình làm rồi

30 tháng 3 2016

a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)

b/3> hoặc = b/5 ( xảy randaaus bằng với a=0

Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0

12 tháng 2 2017

tìm các số tự nhiên a,b,c sao cho a^2 <=b;b^2<=c;c^2<=a