K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2024

Bài 1: Tìm ƯCLN(220; 240; 368)

    220 =  22.5.11; 240 = 24.3.5;  368  = 24.23

    ƯCLN(220; 240; 368) = 22 = 4

 

 

 

 

23 tháng 9 2024

                  Bài 2: Thuật toán Euclid:

Bước 1: Chia hai số cần tìm ước chung lớn nhất cho nhau(lấy số lớn chia số bé) được số dư là R1.

Bước 2: Lấy số bé chia cho R1 được số dư là R2, rồi lại lấy tiếp tục lấy R1 chia cho R2 cứ chia thế cho đến khi Rn = 0.

Bước 3: Số chia trong phép chia hết chính là Ước chung của hai số.

   Ứng dụng thuật toán Eucild tìm ƯCLN(700; 280) 

            700 : 280 =  2 dư 140

             280 : 140 = 2 dư 0 

Vậy ƯCLN(700; 280) = 140

 

 

 

 

 

9 tháng 11 2021

1.vì ƯCLN 2 số là 28 nên đặt a=28k, b=28p, k,p là số tự nhiênta có 28(k+p)=224=>k+q=8vậy các cặp (a, b) thỏa mãn là (28,196), (56, 168), (84,140), (112, 112)và các hoán vị của nó.

2.Dựa vào dữ kiện đề bài,ta có:

a=18k;b=18p.(k,p nguyên tố cùng nhau)

Tích:a.b=18k.18p

=324.k.p=1944

=>k.p=6.

=>k bằng 3;p=2.

Vậy a=54;p=36.

3.ĐK a > 12 ( số chia phải lớn hơn dư )

156 chia a dư 12 => 156 - 12 chia hết cho a => 144 chia hết cho a (1)

280 chia a dư 10 => 280 - 10 chia hết cho a => 270 chia hết cho a (2)

Từ (1) và (2) => 144 ; 270 chia hết cho a 

=> a thuộc UC (144;270)

UCLN ( 144 ; 270 ) =  18 

=> a thuộc ( 18 ; 9 ; 6 ; 3 ; 1 ) 

a > 12 => a= 18 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 1:

Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$

Ta có:

$346-r\vdots a$

$414-r\vdots a$

$539-r\vdots a$

Suy ra:

$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$

$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$

$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$

$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$

$\Rightarrow 1\vdots a\Rightarrow a=1$

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 2:

Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.

Ta có:

$a+b=16x+16y=128$

$\Rightarrow x+y=8$

Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$

$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$

5 tháng 11 2015

Đặt : a = 16x và b = 18y

Ta có : 16 ( x + y ) = 128

=> x + y = 8

=> x = 7 và y = 1

Vì a > b nên ta có a = 16x = 16.7 = 112

b = 128 - 112 = 16

Vậy ...

5 tháng 11 2015

Vì ƯCLN(a, b) = 16 => ta gọi a = 16n, b = 16m.

16n + 16m = 128

=> 16(m + n) = 128

=> n + m = 128 : 16 = 8 

 8 = 0 + 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4 

Vì a > b => n > m => n có thể bằng 8; 7; 6; 5 

m có thể bằng 0; 1; 2; 3 

Vì a > b => loại bỏ trường hợp 4 + 4 

=> (a; b) lần lượt là (128; 0) , (112; 16) ; (96; 32) ; (80; 48)

2 tháng 1 2021

Ta có a.b = ƯCLN(a;b).BCNN(a;b) = 12.240 = 2880

Lại có ƯCLN(a;b) = 12

=> Đặt a = 12m ; b = 12n (ƯCLN(m;n) = 1 ; m > n)

Khi đó a.b = 2880 

<=> 12m.12n = 2880

=> m.n = 20

Lại có ƯCLN(m;n) = 1 ; m > n ta được

m.n = 5.4 = 20.1

Lập bảng xét các trường hợp

m205
n14
a24060
b1248

Vậy các cặp số (a;b) cần tìm là (240;12) ; (60;48)

2 tháng 1 2021

theo bài ra ta có :

a*b=[a,b]*(a,b)

a*b=240*12

a.b=2880

Vì (a,b)=12 nên a chia hết cho 12 , b chia hết cho 12

suy ra a=12*k,b=12.q (k,q thuộc N*)

ta lại có 

a*b=2880

12*k*12*q=2880

144*k*q=2880

k*p=2880/144

k*q=20

vì k,p có vai trò như nhau nên ( k,q)=1

nếu k=4,q=5 thì a=48, b=60

nếu k=1,q=20 thì a =12, b =240

vậy a=48, b=60

a=60,b=48

a=12,b=240

a=240,b=12

13 tháng 8 2016

Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1  với ( a > b ) => m > n  

=> a.b=5m.5n=25.mn=300

=> mn=300 : 25 = 12

Ta có bảng liệt kê sau : 

m412
n31
a2060
b155
13 tháng 10 2024

siuuuuu

10 tháng 11 2016

Vì ƯCLN(a;b)=1 \(\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases}\left(m;n\in N\right);\left(m;n\right)=1}\)

Ta có: a + b = 128

=> 16.m + 16.n = 128

=> 16.(m + n) = 128

=> m + n = 128 : 16 = 8

Mà (m;n)=1 \(\Rightarrow\hept{\begin{cases}m=1\\n=7\end{cases}}\)hoặc \(\hept{\begin{cases}m=3\\n=5\end{cases}}\) hoặc \(\hept{\begin{cases}m=7\\n=1\end{cases}}\) hoặc \(\hept{\begin{cases}m=5\\n=3\end{cases}}\)

Các cặp giá trị (a;b) tương ứng là: (16;112) ; (48;80) ; (112;16) ; (80;48)

7 tháng 11 2019

vì ƯCLN(a,b) = 16 suy ra a = 16.m, b = 16.n (m,n) = 1

ta có a+b = 128

suy ra 16m+16n = 128

suy ra 16.(m+n) = 128

suy ra m+n = 128/16=8

m          ,          n

1                      7 

3                      5

7                      1

5                      3

m