K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Bài 1:

Ta có:

\(6x^4-7x^3+ax^2+3x+2\)

\(=6x^2(x^2-x+2)-x(x^2-x+2)+(a-13)(x^2-x+2)+(a-8)x+(28-2a)\)

\(=(x^2-x+2)(6x^2-x+a-13)+(a-8)x+(28-2a)\)

Từ đây ta dễ dàng thấy đa thức $6x^4-7x^3+ax^2+3x+2$ khi chia cho $x^2-x+2$ có dư là $(a-8)x+(28-2a)$

Để phép chia này là chia hết thì $(a-8)x+(28-2a)=0$, với mọi $x$

$\Rightarrow \left\{\begin{matrix}

a-8=0\\

28-2a=0\end{matrix}\right.$ (vô lý)

Vậy không tồn tại $a$ thỏa mãn đề.

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Bài 2:

Áp dụng định lý Bê-du về phép chia đa thức, ta thấy $f(x)$ chia hết cho $x+2$

$\Rightarrow f(-2)=0$

$\Leftrightarrow 32+4a-2b+c=0(1)$

Mặt khác, theo đề ta có:

$f(x)=2x^4+ax^2+bx+c=Q(x)(x^2-1)+x$ với $Q(x)$ là đa thức thương khi chia $f(x)$ cho $x^2-1$

Cho $x=1$:$\Rightarrow 2+a+b+c=1(2)$

Cho $x=-1\Rightarrow 2+a-b+c=-1(3)$

Từ $(1);(2);(3)\Rightarrow a=\frac{-28}{3}; b=1; c=\frac{22}{3}$

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1

23 tháng 12 2019

Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?

10 tháng 11 2019

x-4 x^4-3x^2+2x-5 x^3+4x^2+13x x^4-4x^3 4x^3-3x^2+2x-5 4x^3-16x^2 13x^2+2x-5 13x^2-52x 54x-5

Vậy x- 3x+ 2x - 5 cho x - 4 bằng \(x^3+4x^2+13x\)dư 54x - 5

10 tháng 11 2019

x+2 x^4+3x^3-2x^2-5x+6 x^3+x^2-4x+3 x^4+2x^3 x^3-2x^2-5x+6 x^3+2x^2 -4x^2-5x+6 -4x^3-8x 3x+6 3x+6 0

Vậy x4+3x3-2x2-5x+6 cho x+2 bằng \(x^3+x^2-4x+3\)dư 0