Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
A=\(17^{2008}-11^{2008}-3^{2008}\)
A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)
A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)
A=\(\left(.........9\right)\)
Vậy A có chữ số tận cùng là 9
2)M=\(17^{25}+24^4-13^{21}\)
M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)
M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)
M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)
M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)
M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)
M=\(\left(...........0\right)⋮10\)
Vậy M\(⋮10\)
a) bn tự lm
b) n + 2 chia hết cho n2 + 1
=> n.(n + 2) chia hết cho n2 + 1
=> n2 + 2n chia hết cho n2 + 1
=> n2 + 1 + 2n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)
Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)
=> 2.(n + 2) chia hết cho n2 + 1
=> 2n + 4 chia hết cho n2 + 1 (2)
Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1
=> 2n + 4 - 2n + 1 chia hết cho n2 + 1
=> 5 chia hết cho n2 + 1
Mà \(n\in N\) nên \(n^2+1\ge1\)
\(\Rightarrow n^2+1\in\left\{1;5\right\}\)
\(\Rightarrow n^2\in\left\{0;4\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Thử lại ta thấy trường hợp n = 2 không thỏa mãn
Vậy n = 0
c) bn tự lm
TL:
-Ta thấy: 22019=(24)504.23=16504.8=.8=¯¯¯¯¯¯¯B8B8¯
Vậy 22019có tận cùng là 8.
.
TL
Ta thấy: 22019=(24)504.23=16504.8=8
Vậy 22019có tận cùng là 8.
Hoktot~
bí rồi à?
1.a)21
b)321
cách làm tương tự như bài trên