Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x.(3x2 – 5x + 3)
=2x3-10x2+6x
b(-2x-1).( x2 + 5x – 3 ) – (x-1)3
=-2x3 - 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1
= -3x3 - 8x2 - 2x + 4
d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2
=2x2-3xy+5y2
⇔
đk: x khác -3; 2
b)\(A=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
c) A=3/4 <=> \(\frac{x-4}{x-2}=\frac{3}{4}\Leftrightarrow4x-16=3x-6\) tự giải pt này ra x nha
d) \(A=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)=> A thuộc Z <=> 2/x-2 thuộc Z( 1 thuộc Z rồi) => x-2 thuộc Ư(2) <=> x-2 thuộc (+-1;+-2)
x-2 | 1 | -1 | 2 | -2 |
x | 3(t/m) | 1(t/m) | 4(t/m) | 0(t/m) |
=> Vậy..
e) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=+-3\)thay lần lượt vào A rồi tính nha
a, \(E=\left(\frac{x^2+4}{x^2-4}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)ĐK : \(x\ne\pm2\)
\(=\left(\frac{x^2+4}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\left(\frac{x^2+4-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{6}{x+2}\right)\)
\(=\frac{x^2+4-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{6}=\frac{x^2-x-2}{6\left(x-2\right)}=\frac{x+1}{6}\)
b, Ta có : \(\left|2x-3\right|=1\Leftrightarrow\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(ktmđk\right)\\x=1\end{cases}}}\)
Thay x = 1 vào biểu thức E ta được : \(\frac{1+1}{6}=\frac{2}{6}=\frac{1}{3}\)
Vậy với x = 1 thì E = 1/3
c, Ta có : \(E< 0\)hay \(\frac{x+1}{6}< 0\Rightarrow x+1>0\)( do 6 > 0 )
\(\Leftrightarrow x>-1\)
Với với x > -1 thì E < 0
d, Ta có E = 3 - x hay \(\frac{x+1}{6}=3-x\Rightarrow x+1=18-6x\Leftrightarrow7x=17\Leftrightarrow x=\frac{17}{7}\)
\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}=\frac{x+2}{x+2}+\frac{-5}{x^2+x-6}+\frac{-1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)}{x^2+x-6}+\frac{-5}{x^2+x-6}+\frac{-1\left(x+3\right)}{x^2+x-6}=\frac{\left(x+2\right)\left(x-2\right)-5-1\left(x+3\right)}{x^2+x-6}\)
=\(\frac{x^2-4-5-x-3}{x^2+x-6}=\frac{x^2-x-12}{x^2+x+6}\)
\(\frac{x^2-x-12}{x^2+x-6}=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
Để giá trị của PT A được xác định thì \(\left(x-2\right)\ne0\)và \(\left(x+3\right)\ne0\)
=> \(x\ne2\) và \(x\ne-3\) thì PT được xác định
a) P(x)=4x2-6x+a; Q(x)=x-3
Lấy P(x):Q(x)=4x-6 dư a+30
Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30
b) P(x)=2x2+x+a; Q(x)=x+3
Lấy P(x):Q(x)=2x-7 dư a+21
Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21
c) P(x)=x3+ax2-4; Q(x)=x2+4x+4
Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12
Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3
⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)
⇒ a ϵ {4;6;2;8}
d) P(x)=2x2+ax+1; Q(x)=x-3
Lấy P(x):Q(x)=2x+a+6 dư 3a+19
Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3
e) P(x)=ax5+5x4-9; Q(x)=x-1
Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4
Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4
f) P(x)=6x3-x2-23x+a; Q(x)=2x+3
Lấy P(x):Q(x)=3x2-5x-4 dư a+12
Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12
g) P(x)=x3-6x2+ax-6 Q(x)=x-2
Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6
Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7
Bài h có a,b bạn xem lại đề
c: \(=\dfrac{x^3+2x^2+x^2+2x-10x-20}{x+2}\)
\(=x^2+x-10\)