Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như đề có vấn đề x^2-5x+2 ko phân tích thành nhân tử đc
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Câu 4:
Để f(x) chia hết cho g(x) thì \(x^2+5x+a⋮x+1\)
\(\Leftrightarrow x^2+x+4x+4+a-4⋮x+1\)
=>a-4=0
hay a=4
Câu 5:
Đêt f(x) chia hết cho g(x) thì \(2x^2+3x+a⋮x+2\)
\(\Leftrightarrow2x^2+4x-x-2+a+2⋮x+2\)
=>a+2=0
hay a=-2
Tham khảo nha bạn : http://lazi.vn/edu/exercise/xac-dinh-cac-hang-so-a-va-b-sao-cho-x4-ax-b-chia-het-cho-x2-4-x4-ax-bx-1-chia-het-cho-x2-1
Bài 1:
a: \(2n^2+n-7⋮n-2\)
\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
b: \(\Leftrightarrow n^2-n-n+1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
Bài 2:
\(g\left(x\right)=x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Để \(f\left(x\right)=x^3+ax^2+bx-60\) chia hết cho \(g\left(x\right)=\left(x+4\right)\left(x+5\right)\) thì
\(\left\{{}\begin{matrix}f\left(-4\right)=0\\f\left(-5\right)=0\end{matrix}\right.\)
Với \(f\left(-4\right)\) ta có:
\(f\left(-4\right)=-64+16a-4b-60=0\)
\(\Leftrightarrow16a-4b=124\)
(1)
Với \(f\left(-5\right)\) , ta có:
\(f\left(-5\right)=-125+25a-5b-60=0\)
\(\Leftrightarrow25a-5b=185\)(2)
Từ (1) và (2) , ta có:
\(\left\{{}\begin{matrix}16a-4b=124\\25a-5b=185\end{matrix}\right.\)
Giải hệ ta được :
\(\left\{{}\begin{matrix}a=6\\b=-7\end{matrix}\right.\)
p/s: Lm xog chả bk mk lm cái zề nữa
T.Thùy Ninh
Theo bài toán:
\(x^2+5x+4=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\)\(x^5+x^4-15x^3-5x^2+34x+24\)
\(=x^5+x^4-15x^3-15x^2+10x^2+10x^2+24x+24\)\(=x^4\left(x+1\right)-15x^2\left(x+1\right)+10x\left(x+1\right)+24\left(x+1\right)\)\(=\left(x+1\right)\left(x^4-15x^2+10x+24\right)\)
Ta có:
\(\dfrac{\left(x^5+x^4-15x^3-5x^2+34x+24\right)}{x^2+5x+4}\)
\(=\dfrac{\left(x+1\right)\left(x^4+15x^2+10x+24\right)}{\left(x+1\right)\left(x+4\right)}=\dfrac{x^4+15x^2+10+24}{x+4}\) \(=\dfrac{x^4+4x^3-4x^3-16x^2+x^2+4x+6x+24}{x+4}\) \(=\dfrac{x^3\left(x+4\right)-4x^2\left(x+4\right)+x\left(x+4\right)+6\left(x+4\right)}{x+4}\)
\(=\dfrac{\left(x+4\right)\left(x^3-4x^2+x+6\right)}{x+4}\)
\(=x^3-4x^2+x+6\)
p/s : ko bk đúng kh nữa . Định chia theo cách bình thường nhưng lười lấy giấy ra rồi chụp ảnh nên lm theo cách này. Sai thôg cảm nha