K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath

28 tháng 11 2017

ĐK:\(x\ne-1;-3;-5;-7;-9\)

\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)

Vậy....

24 tháng 11 2019

ĐK : \(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy pt có tập nghiệm là \(S=\left\{2;-13\right\}\)

8 tháng 3 2016

Mình không ghi lại đề:

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

\(\frac{2}{\left(x+1\right)\left(x+3\right)}+...+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+...+\frac{1}{x+7}-\frac{1}{x+9}=\frac{2}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)

\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

<=>40=2(x+1)(x+9)

<=>\(x^2+10x-11=0\)

<=>\(\left(x-1\right)\left(x+11\right)=0\)

<=>x=1 hoặc x=-11

Ta có:

\(1^2+\left(-11\right)^2=122\)

Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại

8 tháng 3 2016

mk nghĩ là = 122 đó bn

7 tháng 3 2016

\(\frac{1}{x^2+4x+3}=\frac{1}{\left(x+1\right)\left(x+3\right)}=\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}\right)\)

\(\frac{1}{x^2+8x+15}=\frac{1}{\left(x+3\right)\left(x+5\right)}=\frac{1}{2}\left(\frac{1}{x+3}-\frac{1}{x+5}\right)\)

...

Cộng theo vế các hạng tử sẽ bị triệt tiêu

7 tháng 3 2016

\(\Leftrightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}=\frac{1}{5}\)

\(\Rightarrow\frac{1}{x^2+16x+63}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+4x+3}-\frac{1}{5}=0\)

\(\Leftrightarrow-\frac{x^2+10x-11}{5\left(x+1\right)\left(x+9\right)}=0\)

=>x2+10x-11=0

102-(-4(1.11))=144

\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-10\pm\sqrt{144}}{2}\)

x1=[(-10)+12]:2=1

x2=[(-10)-12]:2=-11

tổng nghiệm của pt là 1+(-11)=-10

18 tháng 10 2016

Đk:\(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)

\(\Rightarrow x^2+11x+28=54\)

\(\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)

Vậy....

18 tháng 10 2016

Vậy x = 2

7 tháng 6 2017

     Bài này mk hơi làm tắt nha

Đặt \(A=\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+41}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3\left(x+5\right)\left(x+6\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

         Nhân chéo ta được:

\(\Leftrightarrow54=x^2+11x+28\)

\(\Leftrightarrow x^2+11x=26\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\left(koTM\right)\\x=-13\left(TM\right)\end{cases}}\)

         Vậy nghiệm PT thỏa mãn là -13

          

2 tháng 3 2016

2/ \(=\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

 \(=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)

\(=\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+9}=\frac{2}{5}\)

\(=\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)

\(=\frac{5\left(x+9\right)-5\left(x+1\right)}{5\left(x+1\right)\left(x+9\right)}=\frac{2\left(x+1\right)\left(x+9\right)}{5\left(x+1\right)\left(x+9\right)}\)

\(=>5\left(x+9\right)-5\left(x+1\right)=2\left(x+1\right)\left(x+9\right)\)

\(=5\left(x+9-x-1\right)-2\left(x+1\right)\left(x+9\right)=0\)

\(=5.8-2\left(x^2+10x+9\right)=0\)

\(=40-2x^2-20x-18=0\)

\(=-2x^2-20x-22=0\)

đến đây dùng máy tính giải hệ phương trình bậc 2 là xong

2 tháng 3 2016

Đợi tí coi tính ra ko đã

3 tháng 5 2020

Nguyễn Trần Thành Đạt e cmt ạ

26 tháng 4 2020

đk: ... \(\Rightarrow x\ne-1;-3;-5;-7\)

\(pt\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{3}\)

\(\Leftrightarrow3\left(x+7-x-1\right)=2\left(x+1\right)\left(x+7\right)\)

\(\Leftrightarrow2x^2+16x+14=18\)

\(\Leftrightarrow2x^2+16x-4=0\)

\(\Delta'=64+8=72>0\)

phương trình có 2 nghiệm phân biệt:

\(x_{1,2}=\frac{-b'\pm\sqrt{\Delta}}{a}=\frac{-8\pm\sqrt{72}}{2}=-4\pm3\sqrt{2}\) (tm)

Vậy...