\(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

2. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1)

ĐKXĐ: x>4

Ta có: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow x^2+8x+15=x^2-6x+8\)

\(\Leftrightarrow8x+6x=8-15\)

\(\Leftrightarrow14x=-7\)

hay \(x=-\dfrac{1}{2}\)(loại)

2) Ta có: \(\sqrt{4x^2-9}=3\sqrt{2x-3}\)

\(\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

24 tháng 8 2017

a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)

Vay S = { 2 }

b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)

Vay S = { 4 }

c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)

Vay S = {\(\sqrt{2}\) }

d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)

Vay S = { - 3/2 }

e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)

Vay S = { 3 }

F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

Vay S = { 1/2 }

g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

24 tháng 8 2017

bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả

2 tháng 7 2018

a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**

Kl: x \< 5/2

c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)

Kl: x=-2/3, x=1

d) Đk: x >/ 1

\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)

Kl: x=2

e) Đk: x >/ 1

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)

kl: x >/ 1

f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)

(luôn đúng)

Kl: x \< 1/4

Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!

16 tháng 12 2016

a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\)
(nhận)

b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.

b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK

Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)

c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK

Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)

16 tháng 12 2016

Giời, có thế cũng hok hiểu, lật sách giải ra coi :v

AH
Akai Haruma
Giáo viên
1 tháng 5 2019

Lời giải:
a)

\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}\)

\(=\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{3^2-3}\)

\(=2-\sqrt{3}+\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{3}=\frac{6-3\sqrt{3}}{3}+\frac{2\sqrt{3}-3}{3}=\frac{3-\sqrt{3}}{3}\)

b)

\(\sqrt{x-3+2\sqrt{x-4}}=\sqrt{(x-4)+2\sqrt{x-4}+1}=\sqrt{(\sqrt{x-4}+1)^2}=|\sqrt{x-4}+1|=\sqrt{x-4}+1\)

c)

\(\sqrt{2x+4\sqrt{2x-4}}=\sqrt{(2x-4)+2.2\sqrt{2x-4}+2^2}\)

\(=\sqrt{(\sqrt{2x-4}+2)^2}=|\sqrt{2x-4}+2|=\sqrt{2x-4}+2\)

d)

\(\sqrt{x-\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{2x-2\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{(2x-1)-2\sqrt{2x-1}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-1}-1)^2}=\frac{|\sqrt{2x-1}-1|}{\sqrt{2}}\)

e)

\(\sqrt{x+6\sqrt{x-9}}-\sqrt{x-9}=\sqrt{(x-9)+2.3\sqrt{x-9}+3^2}-\sqrt{x-9}\)

\(=\sqrt{(\sqrt{x-9}+3)^2}-\sqrt{x-9}=|\sqrt{x-9}+3|-\sqrt{x-9}\)

\(=\sqrt{x-9}+3-\sqrt{x-9}=3\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:
a)

\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{(3+\sqrt{3})(3-\sqrt{3})}\)

\(=\frac{2-\sqrt{3}}{4-3}+\frac{\sqrt{3}}{3}-\frac{2(3-\sqrt{3})}{3^2-3}\)

\(=2-\sqrt{3}+\frac{\sqrt{3}}{3}-\frac{3-\sqrt{3}}{3}=\frac{6-3\sqrt{3}}{3}+\frac{2\sqrt{3}-3}{3}=\frac{3-\sqrt{3}}{3}\)

b)

\(\sqrt{x-3+2\sqrt{x-4}}=\sqrt{(x-4)+2\sqrt{x-4}+1}=\sqrt{(\sqrt{x-4}+1)^2}=|\sqrt{x-4}+1|=\sqrt{x-4}+1\)

c)

\(\sqrt{2x+4\sqrt{2x-4}}=\sqrt{(2x-4)+2.2\sqrt{2x-4}+2^2}\)

\(=\sqrt{(\sqrt{2x-4}+2)^2}=|\sqrt{2x-4}+2|=\sqrt{2x-4}+2\)

d)

\(\sqrt{x-\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{2x-2\sqrt{2x-1}}=\frac{1}{\sqrt{2}}\sqrt{(2x-1)-2\sqrt{2x-1}+1}\)

\(=\frac{1}{\sqrt{2}}\sqrt{(\sqrt{2x-1}-1)^2}=\frac{|\sqrt{2x-1}-1|}{\sqrt{2}}\)

e)

\(\sqrt{x+6\sqrt{x-9}}-\sqrt{x-9}=\sqrt{(x-9)+2.3\sqrt{x-9}+3^2}-\sqrt{x-9}\)

\(=\sqrt{(\sqrt{x-9}+3)^2}-\sqrt{x-9}=|\sqrt{x-9}+3|-\sqrt{x-9}\)

\(=\sqrt{x-9}+3-\sqrt{x-9}=3\)

NV
13 tháng 8 2020

5.

\(\Leftrightarrow x^2+7-\left(x+4\right)\sqrt{x^2+7}+4x=0\)

Đặt \(\sqrt{x^2+7}=t>0\)

\(\Rightarrow t^2-\left(x+4\right)t+4x=0\)

\(\Delta=\left(x+4\right)^2-16x=\left(x-4\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\frac{x+4+x-4}{2}=x\\t=\frac{x+4-x+4}{2}=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+7}=x\left(x\ge0\right)\\\sqrt{x^2+7}=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+7=x^2\left(vn\right)\\x^2+7=16\end{matrix}\right.\)

Câu 6 bạn coi lại đề

NV
13 tháng 8 2020

4.

ĐKXĐ: ...

Đặt \(\sqrt{x+3}=a\ge0\)

\(\Rightarrow x+a=\sqrt{5x^2-a^2}\)

\(\Rightarrow x^2+2ax+a^2=5x^2-a^2\)

\(\Rightarrow2x^2-ax-a^2=0\)

\(\Rightarrow\left(x-a\right)\left(2x+a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=x\\a=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=x\left(x\ge0\right)\\\sqrt{x+3}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\le0\right)\end{matrix}\right.\)