\(\dfrac{4x}{6y}\)= \(\dfrac{2x+8}{3y+11}\) vậy
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Bài 1:

Giải:

Ta có: \(\dfrac{4x}{6y}=\dfrac{2x+8}{3y+11}\)

\(\Rightarrow\dfrac{2x}{3y}=\dfrac{2x+8}{3y+11}\)

\(\Rightarrow\left(3y+11\right)2x=\left(2x+8\right)3y\)

\(\Rightarrow6xy+22x=6xy+24y\)

\(\Rightarrow22x=24y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{24}{22}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{12}{11}\)

Vậy \(\dfrac{x}{y}=\dfrac{12}{11}.\)

2 tháng 3 2017

Câu 4:

Giải:

Gọi số h/s lớp 7A, 7B lần lượt là a,b (a,b \(\in N\)*)

Theo bài ra ta có: \(a+b=65\)\(\dfrac{a}{6}=\dfrac{b}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{6}=\dfrac{b}{7}=\dfrac{a+b}{6+7}=\dfrac{65}{13}=5\)

Khi đó \(\left[{}\begin{matrix}\dfrac{a}{6}=5\\\dfrac{b}{7}=5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=30\\b=35\end{matrix}\right.\)

Vậy số h/s lớp \(\left[{}\begin{matrix}7A:30\\7B:35\end{matrix}\right.\).

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC

AH chung

Do đo: ΔABH=ΔACH

b: \(\widehat{BAD}=180^0-120^0=60^0\)

Xét ΔBDA vuông tại D và ΔBHA vuông tại H có

AB chung

góc DAB=góc HAB

DO đo: ΔBDA=ΔBHA

Suy ra: AD=AH

14 tháng 6 2017

Bài 2:

a, Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{-5}=\dfrac{a+b}{2+\left(-5\right)}=\dfrac{21}{-3}=-7\)

(do \(a+b=21\))

\(\Rightarrow\left\{{}\begin{matrix}a=-7.2=-14\\b=-7.\left(-5\right)=35\end{matrix}\right.\)

Vậy \(a=-14;b=35\)

b, Áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:

\(\dfrac{-10}{a}=\dfrac{-15}{b}=\dfrac{-10-\left(-15\right)}{a-b}=\dfrac{5}{-5}=-1\)

(do \(a-b=-5\))

\(\Rightarrow\left\{{}\begin{matrix}a=-10:\left(-1\right)=10\\b=-15:\left(-1\right)=15\end{matrix}\right.\)

Vậy \(a=10;b=15\)

Chúc bạn học tốt!!!

14 tháng 6 2017

c, Ta có:

\(3x=2y\Rightarrow21x=14y\)

\(7y=5z\Rightarrow14y=10z\)

\(\Rightarrow21x=14y=10z\Rightarrow\dfrac{21x}{210}=\dfrac{14y}{210}=\dfrac{10z}{210}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

(do \(x-y+z=32\))

\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)

Vậy \(x=20;y=30;z=42\)

Chúc bạn học tốt!!!

3 tháng 4 2017

Câu 1

\(\left\{{}\begin{matrix}7A,7B\in N\\7B=7A+5\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}7B>7A\\\dfrac{7A}{7B}=\dfrac{8}{9}\end{matrix}\right.\)\(\dfrac{7A}{7B}=\dfrac{8}{9}\Rightarrow\dfrac{7A}{8}=\dfrac{7B}{9}=\dfrac{7B-7A}{9-8}=7B-7A=5\)

\(\Rightarrow\left\{{}\begin{matrix}7A=8.5=40\left(emhs\right)\\7B=9.5=45\left(emhs\right)\end{matrix}\right.\)

3 tháng 4 2017

Câu2

Phần a

Tạm hiểu A=a {chuẩn A\(\ne a\)} vớ đề này hiểu giống nhau

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{\left(a-b\right)}{c-d}=\dfrac{\left(a+b\right)}{c+d}\)

\(\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\dfrac{a}{c}\dfrac{b}{d}=\dfrac{ab}{cd}\)

phầnb

\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)\)\(M=\left(\dfrac{a+b}{c}\right)\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)=2.2.2=8\)

8 tháng 2 2018

nguyen thi vang ; Nguyễn Thị Bích Thủy ; Vương Đại Nguyên

Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0

2 tháng 2 2018

2/ Ta có :

\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)

\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)

\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)

\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)

\(=1-1=0\)

12 tháng 3 2017

1)\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\)

\(\Rightarrow\left(x+1\right)^2=36\)

\(\Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)

Vậy....

b)\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-4.\dfrac{3}{4}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7\)

\(=\dfrac{-5}{2}.\dfrac{6}{5}-7\)

\(=-3-7\)

\(=-10\)

12 tháng 3 2017

Câu 1:

1/ Tìm x:(mk nghĩ là z)

\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\Rightarrow\left(x+1\right)^2=\left(-3\right).\left(-12\right)=36\)

\(\Rightarrow x+1=6;x+1=-6\)

+) \(x+1=6\Rightarrow x=5\)

+) \(x+1=-6\Rightarrow x=-7\)

2/Tính:

\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}-\dfrac{4.3}{4}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}.\dfrac{6}{5}\right)-\left(3.\dfrac{6}{5}\right)-7\)

\(=0,6-3,6-7=-10\)

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)