K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2\cdot2}}=\sqrt{\sqrt{18}}\)

\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2\cdot3}}=\sqrt{\sqrt{12}}\)

từ trên ta suy ra

\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

30 tháng 6 2017

a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)

\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)

\(=2.2\sqrt{3}=4\sqrt{3}\)

b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)

\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)

\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)

c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)

30 tháng 6 2017

!?

em ko biết làm!

...

30 tháng 6 2017

Vì a > 0 và b > 0 ta đc:

                           Đặt \(A=\sqrt{a+b}\)

                                  \(A^2=a+b\)

                                   \(B=\sqrt{a}+\sqrt{b}\)

                                   \(B^2=a+b+2\sqrt{ab}\)

             Vì \(a+b< a+b+2\sqrt{ab}\)

                   \(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(đpcm\right)\)

1 tháng 7 2017

Vì a và b đều >0. Ta được:

Đặt A = \(\sqrt{a+b}\)

A2 = \(a+b\)

B = \(\sqrt{a}+\sqrt{b}\)

B2 = \(a+b+2\sqrt{ab}\)

Vì a + b < a + b + \(2\sqrt{ab}\)

Nên \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\) (đpcm)

27 tháng 7 2017

a) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\left(\sqrt{15}-\sqrt{6}\right)\left(\sqrt{35}+\sqrt{14}\right)}{21}\)

\(=\dfrac{\sqrt{525}+\sqrt{210}-\sqrt{210}-\sqrt{84}}{21}=\dfrac{5\sqrt{21}-2\sqrt{21}}{21}\)

\(=\dfrac{3\sqrt{21}}{21}=\dfrac{\sqrt{21}}{7}\)

b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}=\dfrac{\sqrt{10}+\sqrt{15}}{2\sqrt{2}+2\sqrt{3}}\)

\(=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(2\sqrt{2}-2\sqrt{3}\right)}{-4}=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-2}\)

\(=\dfrac{\left(\sqrt{10}+\sqrt{15}\right)\left(\sqrt{2}-\sqrt{3}\right)}{-2}=\dfrac{\sqrt{20}-\sqrt{30}+\sqrt{30}-\sqrt{45}}{-2}\)

\(=\dfrac{2\sqrt{5}-3\sqrt{5}}{-2}=\dfrac{-\sqrt{5}}{-2}=\dfrac{\sqrt{5}}{2}\)

c) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\) có sai k nhỉ

d) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) (tự làm đc kq là \(1+\sqrt{2}\))

e,f) xem lại đề

29 tháng 7 2017

tất cả câu hỏi đều đúng bạn ạ

18 tháng 7 2017

\(=\frac{1}{\sqrt{x}\left(x\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)

12 tháng 8 2017

bình 2 vế rồi rút gọn nhé !!

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)

 

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

a) 7 và \(\sqrt{37}+1\)

=7 và 7,08

=>......

b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)

=-3,95 và 9,95

=>.....

28 tháng 6 2016

Toán lớp 9

28 tháng 6 2016

mình ghi nhầm pn ơi.. bài 2 là \(\left(3-\sqrt{2}\right)\cdot\sqrt{11+6\sqrt{6}}\)