Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
\(a\)
\(\sqrt{7}+\sqrt{15}\)
\(=\sqrt{7+15}\)
\(=4,69\)
\(4,69< 7\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)
\(b\)
\(\sqrt{7}+\sqrt{15}+1\)
\(=\sqrt{7+15}+1\)
\(=4,69+1\)
\(=5,69\)
\(\sqrt{45}\)
\(=6,7\)
\(5,69< 6,7\)
\(\Rightarrow\)\(\sqrt{7}+\sqrt{15}+1\)\(< \)\(\sqrt{45}\)
\(c\)
\(\frac{23-2\sqrt{19}}{3}\)
\(=\frac{22.4,53}{3}\)
\(=\frac{95,7}{3}\)
\(=31,9\)
\(\sqrt{27}\)
\(=5,19\)
\(31,9>5,19\)
\(\text{}\Rightarrow\text{}\text{}\)\(\frac{23-2\sqrt{19}}{3}\)\(>\sqrt{27}\)
\(d\)
\(\sqrt{3\sqrt{2}}\)
\(=\sqrt{3.1,41}\)
\(=\sqrt{4,23}\)
\(=2,05\)
\(\sqrt{2\sqrt{3}}\)
\(=\sqrt{2.1,73}\)
\(=\sqrt{3,46}\)
\(=1,86\)
\(2,05>1,86\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
\(Học \) \(Tốt !!!\)
a) Ta có : \(\sqrt{7}< \sqrt{9}=3;\sqrt{15}< \sqrt{16}=4\)
Do đó : \(\sqrt{7}+\sqrt{15}< 3+4=7\)
b) Ta có : \(\sqrt{17}>\sqrt{16}=4;\sqrt{5}>\sqrt{4}=2\)
\(\Rightarrow\sqrt{17}+\sqrt{5}+1>4+2+1=7\)
Lại có : \(\sqrt{45}< \sqrt{49}< 7\)
Do đó : \(\sqrt{17}+\sqrt{5}+1>\sqrt{45}\)
c) Ta thấy : \(\sqrt{19}>\sqrt{16}=4\)
\(\Rightarrow2\sqrt{19}>2.4=8\)
\(\Rightarrow-2\sqrt{19}< -8\)
\(\Rightarrow23-2\sqrt{19}< 23-8=15\)
\(\Rightarrow\frac{23-2\sqrt{19}}{3}< 5\). Mặt khác : \(\sqrt{27}>\sqrt{25}=5\)
Nên : \(\frac{23-2\sqrt{19}}{3}< \sqrt{27}\)
d) Vì : \(18>12>0\Rightarrow\sqrt{18}>\sqrt{12}>0\)
\(\Leftrightarrow3\sqrt{2}>2\sqrt{3}>0\)
\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
a/ giả sử \(\sqrt{7}-\sqrt{2}< 1\)
\(\Leftrightarrow\sqrt{7}< 1+\sqrt{2}\)
\(\Leftrightarrow 7< 1+2\sqrt{2}+2\)
\(\Leftrightarrow4< 2\sqrt{2}\Leftrightarrow16< 8\left(sai\right)\)
vậy \(\sqrt{7}-\sqrt{2}>1\)
câu b, c bạn làm tương tụ nhé , giả sử một đẳng thức tạm, sau đó bình phương lên rồi làm theo như trên là được nha
Bài này cũng dễ
a, \(\sqrt{7}-\sqrt{2}\) lớn hơn \(1\) . Vì
\(\sqrt{7}-\sqrt{2}=1,231537749\)
\(1=1\)
b, \(\sqrt{8}+\sqrt{5}\) bé hơn \(\sqrt{7}+\sqrt{6}\) . Vì
\(\sqrt{8}+\sqrt{5}=5,064495102\)
\(\sqrt{7}+\sqrt{6}=5,095241054\)
c, \(\sqrt{2005}+\sqrt{2007}\) lớn hơn \(\sqrt{2006}\) . Vì
\(\sqrt{2005}+\sqrt{2007}=89,57677992\)
\(\sqrt{2006}=44,78839135\)
a)\(1+\sqrt{3}>1+\sqrt{1}=1+1=2\)
Vậy \(1+\sqrt{3}>2\)
c) \(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)
Vậy \(\sqrt{3}-1< 1\)
e) \(\sqrt{2}+\sqrt{5}< \sqrt{16}+\sqrt{16}=4+4=8\)
Vậy \(\sqrt{2}+\sqrt{5}< 8\)
a) Ta có: \(\left(2+\sqrt{3}\right)^2=4+2.2\sqrt{3}+\left(\sqrt{3}\right)^2=7+\sqrt{48}\)
\(\left(1+\sqrt{5}\right)^2=1+2\sqrt{5}+5=6+2\sqrt{5}=6+\sqrt{20}\)
\(\hept{\begin{cases}\sqrt{20}< \sqrt{48}\\6< 7\end{cases}}\Rightarrow\sqrt{20}+6< \sqrt{48}+7\)
\(\Rightarrow\left(1+\sqrt{5}\right)^2< \left(2+\sqrt{3}\right)^2\Rightarrow1+\sqrt{5}< 2+\sqrt{3}\)
b) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
cảm ơn bạn nhiều