Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(\left\{{}\begin{matrix}\sqrt{10}\approx3,16\\\sqrt{29}\approx5,39\\\sqrt{107}\approx10,34\\\sqrt{19,7}\approx4,44\end{matrix}\right.\)
Bài 2 : \(\left\{{}\begin{matrix}\sqrt{x}< 3\Leftrightarrow x< 9\Leftrightarrow0\le x< 9\\2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\end{matrix}\right.\)
bài 1 đúng\(\sqrt{\dfrac{49}{9}}=\dfrac{7}{3}\)
bài 2 dùng máy tính bỏ túi hoặc
a) giả sử: \(6< \sqrt{37}\)
\(\Leftrightarrow\) 62 < (\(\sqrt{37}\))2
\(\Leftrightarrow\) 36 < 37(luôn đúng)
Vậy 6 < \(\sqrt{37}\)
b), c) tương tự
bài 3
a) đúng
b) sai
bài yêu cầu Cm không dúng máy tính thì làm như bài 2
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)
c: \(=\left|x-4\right|+\left|x-6\right|\)
=x-4+6-x=2
a) \(A=\frac{-\sqrt{x}+2+4}{\sqrt{x}-2}=-1+\frac{4}{\sqrt{x}-2}\)
Để \(A\in Z\Leftrightarrow\sqrt{x}-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-2;0;1;3;4;6\right\}\)
Mà \(x\in Z;\sqrt{x}\ge0\Rightarrow x\in\left\{0;1;9;16;36\right\}\)
b)\(A=\frac{4\sqrt{x}-2+3}{2\sqrt{x}-1}=2+\frac{3}{2\sqrt{x}-1}\)
Để \(A\in Z\Leftrightarrow2\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-1;0;1;2\right\}\Leftrightarrow x\in\left\{0;1;4\right\}\)
Bài 1 :
Câu a : \(\sqrt{36}< \sqrt{37}\Leftrightarrow6< \sqrt{37}\)
Câu b : \(\sqrt{17}>\sqrt{16}\Leftrightarrow\sqrt{17}>4\)
Câu c : \(0,7< 0,8\Leftrightarrow\sqrt{0,7}< 0,8\)
Bài 2 :
Câu a : \(3< \sqrt{10}< 4\Leftrightarrow\sqrt{9}< \sqrt{10}< \sqrt{16}\) Đúng
Câu b : \(1,1< \sqrt{1,56}< 1,2\Leftrightarrow1,21< 1,56< 1,44\) Sai
1. So sánh
a)\(6< \sqrt{37}\)
b) \(\sqrt{17}>4\)
c)\(\sqrt{0,7}>0,8\)