Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
Ta có : \(\left(\dfrac{1}{2}\right)^{300}\) = \(\left(\left(\dfrac{1}{2}\right)^3\right)^{100}\)
\(\left(\dfrac{1}{3}\right)^{200}=\left(\left(\dfrac{1}{3}\right)^2\right)^{100}\)
Ta có : \(\left(\dfrac{1}{2}\right)^3=\dfrac{1^3}{2^3}=\dfrac{1}{2^3}=\dfrac{1}{8}\)
\(\left(\dfrac{1}{3}\right)^2=\left(\dfrac{1^2}{3^2}\right)=\dfrac{1}{3^2}=\dfrac{1}{9}\)
Vì \(\dfrac{1}{8}>\dfrac{1}{9}=>\left(\dfrac{1}{2}\right)^3>\left(\dfrac{1}{3}\right)^2\)
Vậy \(\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
So sánh các số hữu tỉ:
a) và
b) và
c) x = -0,75 và
Lời giải:
a)
Vì -22 < -21 và 77> 0 nên x <y
b)
Vì -216 < -213 và 300 > 0 nên y < x
c)
Vậy x=y
Lời giải:
a)
Vì -22 < -21 và 77> 0 nên x <y
b)
Vì -216 < -213 và 300 > 0 nên y < x
c)
Vậy x=y
\(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}\) mà \(5^{200}=25^{100}\)
\(25^{100}< 27^{100}\Rightarrow3^{300}>5^{200}>5^{199}\)
Trong hai phân số cùng tử nếu mẫu nào lớn hớn thì phân số đó bé hơn.
Vậy : \(\frac{1}{5^{199}}>\frac{1}{3^{300}}\)
\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\\ \left(\dfrac{1}{2}\right)^{300}=\left(\dfrac{1}{2}\right)^{3\cdot100}=\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\\ \left(\dfrac{1}{3}\right)^{200}=\left(\dfrac{1}{3}\right)^{2\cdot100}=\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\\ \dfrac{1}{8}>\dfrac{1}{9}\Rightarrow\left(\dfrac{1}{8}\right)^{100}>\left(\dfrac{1}{9}\right)^{100}\Rightarrow\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\\ \left(0,3\right)^{20}=\left(0,3\right)^{2\cdot10}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}< \left(0,1\right)^{10}\)
a) \(\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{40}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{40}< \left(\dfrac{1}{2}\right)^{50}\)
Vì \(40< 50\)
b)\(\left[\left(\dfrac{1}{2}\right)^3\right]^{100}=\left(\dfrac{1}{8}\right)^{100}\)
\(\left[\left(\dfrac{1}{3}\right)^2\right]^{100}=\left(\dfrac{1}{9}\right)^{100}\)
\(\Rightarrow\text{}\text{}\left(\dfrac{1}{2}\right)^{300}>\left(\dfrac{1}{3}\right)^{200}\)
Vì \(\dfrac{1}{8}>\dfrac{1}{9}\)
c)\(\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
\(\Rightarrow\left(0,1\right)^{10}>\left(0,3\right)^{20}\)
Vì \(0,1>0,09\)
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300