\(\frac{2017}{2018}+\frac{2018}{2019}\)và N = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)

\(\Rightarrow M>N\)

b.ta thấy:

\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)

=> A>B

30 tháng 4 2018

Trịnh Thùy Linh ơi mk cảm ơn bạn nhìu nha =)), iu bạn nhìu

17 tháng 2 2020

a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)

                 \(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)

Vì 0<a<b nên ab+ac<ab+bc

\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)

hay \(\frac{a}{b}< \frac{a+c}{b+c}\)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

18 tháng 2 2020

Quy đồng: \(\frac{n}{n+1}\)\(\frac{n\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}\)=\(\frac{n^2.2n}{\left(n+1\right)\left(n+2\right)}\)

\(\frac{n+1}{n+2}\)\(\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+2\right)}\)\(\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)

Vì n2+2n+1 < n2.2n+1 nên...

Vậy...

Ko chắc nha

Nghe nó ko có lý kiểu j j ý 

11 tháng 3 2017

phải là Lục Cẩn Niên chứ !