Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ So sánh A với \(\frac{1}{4}\)
Có \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.........+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-.......+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)
\(A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{1}{2}-\frac{1}{2015.2016}\)
Vậy \(A>\frac{1}{4}\)
Ta có : \(\frac{1}{2.3}< \frac{1}{1.2}\)
\(\frac{1}{3.4}< \frac{1}{2.3}\)
\(\frac{1}{4.5}< \frac{1}{3.4}\)
...
\(\frac{1}{99.100}< \frac{1}{98.99}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(A< 1-\frac{1}{99}< 1\)
\(\Rightarrow A< 1\)
A \(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Vì \(\frac{49}{100}< 1\Rightarrow A< 1\)
Chúc bn hk tốt :>
a/ \(\frac{n+1}{n+3}=\frac{n+3-2}{n+3}=1-\frac{2}{n+3}\)và \(\frac{n+3}{n+5}=\frac{n+5-2}{n+5}=1-\frac{2}{n+5}\)
Để so sánh 2 phân số trên,ta phải so sánh \(1-\frac{2}{n+3}\)và \(1-\frac{2}{n+5}\)
=> phải so sánh 2/n+3 và 2/n+5
Ta thấy n+3<n+5=>2/n+3>2/n+5=>1-2/n+3<1-2/n+5=>\(\frac{n+1}{n+3}< \frac{n+3}{n+5}\)
b/A=\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Do 1/100 >0 =>1/2-1/100 <1/2=>A<1/2
Nhớ cho mình k nha
AHIHI ^_^