\(^2\) - x + 1 ) + x - (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:\(A=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+1994\)

\(A=x^3+1+x-x^3+1+1994\)

\(A=x+1996\)

\(A=-1995+1996\)

\(A=-1\)

Câu 2:

a) \(7\left(x-y\right)+a\left(x-y\right)\)

\(=\left(7-a\right)\left(x-y\right)\)

b) \(25x^2-10x+1=\left(5x-1\right)^2\)

c) \(8x^3-1\)

\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)

Câu 3:

a) \(5x-\left(x-3\right)-3\left(x-3\right)=0\)

\(\Leftrightarrow\left(5x-3\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-3=0\Leftrightarrow5x=3\Leftrightarrow x=0,6\\x-3=0\Leftrightarrow x=3\end{matrix}\right.\)

b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow10x+35-4x^2-14x-4x^2+25=0\)

\(\Leftrightarrow-8x^2-4x+70=0\)

31 tháng 7 2018

Bài 1:

a) \(A=\left(x-3\right)^2-\left(2x-6\right)\left(1-2x\right)+\left(1-2x\right)^2\)

\(A=\left(x-3\right)^2-2\left(x-3\right)\left(1-2x\right)+\left(1-2x\right)^2\)

\(A=\left[\left(x-3\right)-\left(1-2x\right)\right]^2\)

\(A=\left(x-3-1+2x\right)^2\)

\(A=\left(3x-4\right)^2\)

*Giải thích

Gọi x-3 = a ; 1-2x = b, thay vào ta sẽ có:

a2 - (2x - 6)b + b2

Ta sẽ thấy biểu thức trên gần giống với hằng đẳng thức a2 - 2ab + b2 . Tuy nhiên ở trên biểu thức lại chưa có 2ab mà chỉ mới có b, cho nên ta cần biến đổi để biểu thức có thừa số 2 trước. Ta đặt nhân tử chung là 2 của 2x - 6 sẽ được 2(x - 3). Vậy ta sẽ có thừa số hai là (x - 3) là a. Từ đó áp dụng công thức a2 - 2ab + b2 như bình thường.

Bài 2:

a) \(2y\left(x+3y\right)-x\left(x+1y\right)\)

\(=2xy+6y^2-x^2-xy\)

\(=xy+6y^2-x^2\)

\(=6y^2+3xy-2xy-x^2\)

\(=3y\left(2y+x\right)-x\left(2y+x\right)\)

\(=\left(2y+x\right)\left(3y-x\right)\)

*Giải thích

B1: Ta nhân phân phối biểu thức ra thành dạng tổng đại số

B2: Sử dụng phương pháp tách hạng tử, ta tách xy thành 3xy - 2xy.

B3: Sử dụng phương pháp nhóm hạng tử, 6y2 + 3xy thành một nhóm, -2xy - x2 thành một nhóm

B4: Phân phối đặt nhân tử chung của mỗi tích sau đó sẽ tiếp tục xuất hiện nhân tử chung là 2y + x và phân phối thành tích

b) \(5x^2y-3x^2y^2+4xy\) bucminh Bài này mình làm hong ra không biết đề có đúng không. Mình học lớp 7 lên 8, kiến thức học hè của mình không thành thạo bằng anh chị lớp 8.

c) \(3a\left(x-y\right)-b\left(y-x\right)\)

\(=3a\left(x-y\right)+b\left(x-y\right)\)

\(=\left(x-y\right)\left(3a+b\right)\)

*Cách làm

B1: Biến đổi y - x thành x - y để có nhân tử chung, ta áp dụng công thức đổi dấu.

B2: Đặt nhân tử chung thành dạng tích

Bài 3:

a) \(4x^2-4x+1=0\)

\(\Rightarrow\left(2x\right)^2-2.2x+1^2=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow2x-1=0\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\dfrac{1}{2}\)

*Áp dụng hằng đẳng thức a2 - 2ab + b2

b) \(3x\left(x-3\right)+2\left(3-x\right)=0\)

\(\Rightarrow3x\left(x-3\right)-2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(3x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)

*Cách làm

Dùng công thức đổi dấu để biến đổi 3 - x thành x - 3 rồi đặt nhân tử chung thành dạng tích. Từ đó suy ra tìm x.

24 tháng 7 2018

Bài 1

a) \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x\left(x^2-xy+y^2\right)+y\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\left(Đpcm\right)\)

b) \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\left(Đpcm\right)\)

Bài 2

a) \(16x^2-24xy+9y^2\)

\(=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2\)

\(=\left(4x-3y\right)^2\)

b) \(\left(x-2\right)^2-y^2\)

\(=\left(x-2-y\right)\left(x-2+y\right)\)

Bài 3

a) \(\left(x+2\right)\left(x^2-2x+4\right)+x\left(x-5\right)\left(x+5\right)=-17\)

\(\Rightarrow x^3+2^3+x\left(x^2-5^2\right)=-17\)

\(\Rightarrow x^3+8+x^3-25x=-17\)

\(\Rightarrow2x^3-25x=-17-8=-25\)

Hình như câu này đề sai rồi đấy bạn bucminh

b) \(25x^2-2=0\)

\(\Rightarrow25x^2=2\)

\(\Rightarrow x^2=\dfrac{2}{25}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)

24 tháng 7 2018

1.

\(a.\left(x+y\right).\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)\(b.\left(x-y\right)\left(x^2+xy+y^2\right)=x^3+x^2y+xy^2-x^2y-xy^2-y^3=x^3-y^3\)2.

\(a.16x^2-24xy+9y^2=\left(4x\right)^2-2.4x.3y+\left(3y\right)^2=\left(4x-3y\right)^2\)\(b.\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)

3.

\(b.25x^2-2=0\)

\(\Leftrightarrow25x^2=2\Leftrightarrow x^2=\dfrac{2}{25}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{2}{25}}\\x=-\sqrt{\dfrac{2}{25}}\end{matrix}\right.\)

19 tháng 2 2020

Câu 1 :

a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)

b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)

\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)

\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)

\(\Leftrightarrow2x^2+8x+6=0\)

\(\Leftrightarrow x^2+4x+4-1=0\)

\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)

Vậy : \(x=-3\) thì P = 1.

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt

30 tháng 1 2019

a) \(x^3-5x^2+8x-4\)

\(=x^3-2x^2-3x^2+6x+2x-4\)

\(=x^2\left(x-2\right)-3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-3x+2\right)\)

\(=\left(x-2\right)\left(x^2-x-2x+2\right)\)

\(=\left(x-2\right)\left[x\left(x-1\right)-2\left(x-1\right)\right]\)

\(=\left(x-2\right)\left(x-1\right)\left(x-2\right)\)

30 tháng 1 2019

b) \(A=10x^2-15x+8x-12+7\)

\(A=5x\left(2x-3\right)+4\left(2x-3\right)+7\)

\(A=\left(2x-3\right)\left(5x+4\right)+7\)

Dễ thấy \(\left(2x-3\right)\left(5x+4\right)⋮\left(2x-3\right)=B\)

Vậy để \(A⋮B\)thì \(7⋮\left(2x-3\right)\)

\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{2;1;5;-2\right\}\)

Vậy.......

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

17 tháng 7 2017

a) \(2x\left(2x+5\right)-4x\left(x-3\right)=7\)

\(4x^2+10x-4x^2+12x=7\)

\(22x=7\Rightarrow x=0,31\)

b) \(\left(x+2\right)\left(x-2\right)-\left(x+1\right)^2=2\)

\(\left(x^2-4\right)-\left(x^2+2x+1\right)=2\)

\(x^2-4-x^2-2x-1=2\)

\(-2x=7\Rightarrow x=-3,5\)

c) \(\left(x+2\right)\left(x-1\right)-\left(x+3\right)\left(x-2\right)=0\)

\(x^2-x+2x-2-x^2+2x+3x-6=0\)

\(6x=8\Rightarrow x=1,3\)