Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, với x > 0 ; x khác 1 ; 4
a, \(P=\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{x-1}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{x-4}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
b, Ta có P > 0 => \(\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp đk vậy x > 1 ; x khác 4
3
dat \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}=\frac{a}{b}\) dk (a,b)=1 a,b thuoc N*
khi do \(bx-by\sqrt{2014}=ay-az\sqrt{2014}\)
\(\Leftrightarrow bx-ay=\left(by-az\right)\sqrt{2014}\)
\(\Rightarrow\hept{\begin{cases}bx-ay=0\\by-az=0\end{cases}\Leftrightarrow\hept{\begin{cases}bx=ay\\by=az\end{cases}\Rightarrow}\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\Rightarrow xz=y^2}\)
khi do \(x^2+y^2+z^2=\left(x+z\right)^2-2xz+y^2=\left(x+z\right)^2-y^2=\left(x+z-y\right)\left(x+y+z\right)\)
vi x^2 +y^2 +z^2 la so nt va x+y+z>1
nen \(\hept{\begin{cases}x+y+z=x^2+y^2+z^2\\x+z-y=1\end{cases}}\)
giai ra ta co x=y=z=1
Câu !! .1)\(PT< =>2x-2\sqrt{x-8}-6\sqrt{x}+2=0\)(đk:\(x\ge8\))
\(< =>x-8-2\sqrt{x-8}+1+x-6\sqrt{x}+9=0\)
\(< =>\left(\sqrt{x-8}-1\right)^2+\left(\sqrt{x}-3\right)^2=0\)
\(< =>\hept{\begin{cases}\sqrt{x-8}=1\\\sqrt{x}=3\end{cases}}\)
\(< =>x=9\)(thỏa mãn đk)
vậy.....
Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))
sol nhẹ vài bài
\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)
\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\)
Khi đó \(z-y⋮x;z+y+3⋮x\)
Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\)
Trường hợp này loại
Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)
Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)
\(\Rightarrow z< x+y\)
Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)
Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)
Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)
\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z
\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)
\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)
Vậy.............
Bài 1 : Giải :
a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)
\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)
\(\Rightarrow x+1=x\sqrt[3]{2}\)
\(\Rightarrow\left(x+1\right)^3=2x^3\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)
\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)
\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)
\(=2020\)
P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))
bài 1: pt (2) hình như có vấn đề
b) \(x^4-7x^2+6=0\Leftrightarrow x^4-x^2-6x^2+6=0\Leftrightarrow\left(x^2-1\right)\left(x^2-6\right)=0\)
=> x^2-1=0 <=> x=+-1 hoặc x^2-6=0 <=> x=+-6
bài 2: ĐK: x >0 và x khác 1
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x^3}-1\right)}{x+\sqrt{x}+1}-\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-2+2\sqrt{x}+2=\sqrt{x}\left(\sqrt{x}-1\right)\)
b) ví x>0 => \(\sqrt{x}-1>-1\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)>-1\)=> k tìm đc Min
c) \(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{2}{\sqrt{x}-1}\)
để biểu thức này nguyên => \(\sqrt{x}-1\inƯ\left(2\right)\Leftrightarrow\sqrt{x}-1\in\left(+-1;+-2\right)\)
\(\sqrt{x}-1\) | 1 | -1 | 2 | -2 |
x | 4(t/m) | 0(k t/m) | 9(t/m) | PTVN |
=> x thuộc (4;9)
bìa 3: câu này bạn đăng riêng mình làm rồi đó
Bài 2 :
Với \(x\ge0;x\ne1\)
\(=\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(x+2\sqrt{x}+1\right)\left(\frac{1}{\sqrt{x}+1}\right)^2=1\)
Vậy ta có đpcm
Bài 5 :
a, cm tứ giác nội tiếp đúng ko bạn ?
Ta có : ^ACB = 900 ( góc nt chắn nửa đường tròn )
^AEB = 900 ( góc nt chắn nửa đường tròn )
=< ^FCD = ^DCF = 900
Xét tứ giác FCDE có
^FCD + ^DCF = 1800
mà 2 góc này đối
Vậy tứ giác FCDE là tứ nt 1 đường tròn
b, Xét tam giác DAB và tam giác DCE có :
^ADB = ^CDE ( đối đỉnh )
^DAB = ^DCE ( góc nt chắn cung BE )
Vậy tam giác DAB ~ tam giác DCE ( g.g )
\(\frac{DA}{DC}=\frac{DB}{DE}\Rightarrow DA.DE=DB.DC\)
c, Xét tam giác OBC có OC = OB
nên tam giác OBC cân tại O => ^OCB = ^OBC (1)
mà ^CBA = ^CEA ( góc nt chắn cung CA ) (2)
Vì tứ giác DCEF là tứ giác nt 1 đường tròn (cma)
=> ^CFD = ^CED ( góc nt cùng chắn CD ) (3)
Từ (1) ; (2) ; (3) suy ra ^CFD = ^OCB