Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
2x-4=2(x-2)
2x+4=2(x+2)
x
Để P xác định thì
[2(x-2) => [2(x+2)
[2(x+2) =>[ 2(x-2)
[ (x-2)(x+2) => [(x+2)(x-2)
Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
a, ĐKXĐ: x\(\ne\) 1;-1;2
b, A= \(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{2x^2-2x}{2\left(x+1\right)\left(x-1\right)}+\frac{2x+2}{2\left(x+1\right)\left(x-1\right)}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-2}{x+1}\)
=\(\frac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\times\frac{x-2}{x+1}\)
=\(\frac{x-2}{x-1}\)
c, Khi x= -1
→A= \(\frac{-1-2}{-1-1}\)
= -3
Vậy khi x= -1 thì A= -3
Câu d thì mình đang suy nghĩ nhé, mình sẽ quay lại trả lời sau ^^
a,ĐKXĐ:x#1; x#-1; x#2
b,Ta có:
A=\(\left(\frac{x}{x+1}+\frac{1}{x-1}-\frac{4x}{2-2x^2}\right):\frac{x+1}{x-2}\)
=\(\left(\frac{x\left(x-1\right)2}{\left(x+1\right)\left(x-1\right)2}+\frac{\left(x+1\right)2}{\left(x-1\right)\left(x+1\right)2}+\frac{4x}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{x-2}\)
=\(\frac{2x^2-2x+2x+2+4x}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2x^2+4x+2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{2\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)2}.\frac{x-2}{x+1}\)
=\(\frac{x-2}{x+1}\)
c,Tại x=-1 ,theo ĐKXĐ x#-1 \(\Rightarrow\)A không có kết quả
d,Để A có giá trị nguyên \(\Rightarrow\frac{x-2}{x+1}\)có giá trị nguyên
\(\Leftrightarrow x-2⋮x+1\)
\(\Leftrightarrow x+1-3⋮x+1\)
Mà \(x+1⋮x+1\Rightarrow3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Mà theo ĐKXĐ x#2\(\Rightarrow x\in\left\{0;-2;-4\right\}\)
Vậy \(x\in\left\{0;-2;-4\right\}\)thì a là số nguyên
a) Điều kiện: \(x\ne0;x\ne1\)
b) \(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\left(\frac{x^2}{\left(x-1\right).x}-\frac{1}{x.\left(x-1\right)}\right):\frac{\left(x+1\right)^2}{x}\)
\(A=\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right).x}.\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x+1}{x}.\frac{x}{\left(x+1\right)^2}=\frac{1}{x+1}\)
c) Thay: \(x=2\)vào \(\frac{1}{x+1}\)ta có: \(A=\frac{1}{2+1}=\frac{1}{3}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
b)
\(A=\left(\frac{x}{x-1}-\frac{1}{x^2-x}\right):\frac{x^2+2x+1}{x}\)
\(A=\left(\frac{x}{x-1}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{x^2+2x+1}\)
\(A=\left(\frac{x\cdot x}{x\left(x-1\right)}-\frac{1}{x\left(x-1\right)}\right)\cdot\frac{x}{\left(x+1\right)^2}\)
\(A=\frac{x^2-1}{x\left(x-1\right)}\cdot\frac{x}{\left(x+1\right)^2}=\frac{\left(x^2-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x-1\right)\cdot x}{x\left(x-1\right)\left(x+1\right)^2}=\frac{1}{x+1}\)
c) \(A=\frac{1}{x+1}=\frac{1}{2+1}=\frac{1}{3}\)
Vậy \(A=\frac{1}{3}\)
a) ĐKXĐ: \(\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b) bạn rút gọn, biểu thức sẽ bằng 4
=> giá tri của biểu thức sẽ không phụ thuộc vào biến x
tôi vướng ở câu b giải cứ bị lẫn giải ra vẫn có biến x giải họ tôi cái
Điều kiện xác định của \(P\)là:
\(\hept{\begin{cases}x^2+2x+1\ne0\\x^2-1\ne0\\x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
\(P=\left(\frac{2+x}{x^2+2x+1}-\frac{x-2}{x^2-1}\right).\frac{1-x^2}{x}\)
\(=\left[\frac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\left(x-1\right)}-\frac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\right].\frac{1-x^2}{x}\)
\(=\frac{2x}{\left(x+1\right)^2\left(x-1\right)}.\frac{1-x^2}{x}=\frac{-2}{x+1}\)
Để \(P\)nguyên mà \(x\)nguyên suy ra \(x+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow x\in\left\{-3,-2,0,1\right\}\)
Đối chiếu điều kiện ta được \(x\in\left\{-3,-2\right\}\)thỏa mãn.
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.