Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
a)
\((x+2)(x+4)(x+6)(x+8)+16\)
\(=[(x+2)(x+8)][(x+4)(x+6)]+16\)
\(=(x^2+10x+16)(x^2+10x+24)+16\)
\(=a(a+8)+16\) (Đặt \(x^2+10x+16=a\) )
\(=a^2+2.4.a+4^2=(a+4)^2\)
\(=(x^2+10x+16+4)^2\)
\(=(x^2+10x+20)^2\)
b) \((x^2+x)(x^2+x+1)-6\)
\(=(x^2+x)^2+(x^2+x)-6\)
\(=(x^2+x)^2-2(x^2+x)+3(x^2+x)-6\)
\(=(x^2+x)(x^2+x-2)+3(x^2+x-2)\)
\(=(x^2+x-2)(x^2+x+3)\)
\(=(x^2-x+2x-2)(x^2+x+3)\)
\(=[x(x-1)+2(x-1)](x^2+x+3)\)
\(=(x-1)(x+2)(x^2+x+3)\)
c)
\((x^2-4x)^2-8(x^2-4x)+15\)
\(=(x^2-4x)^2-3(x^2-4x)-5(x^2-4x)+15\)
\(=(x^2-4x)(x^2-4x-3)-5(x^2-4x-3)\)
\(=(x^2-4x-3)(x^2-4x-5)\)
\(=(x^2-4x-3)(x^2+x-5x-5)\)
\(=(x^2-4x-3)[x(x+1)-5(x+1)]=(x^2-4x-3)(x+1)(x-5)\)
b) Đặt \(x-7=a\) ta có:
\(\left(a+1\right)^4+\left(a-1\right)^4=16\)
\(\Leftrightarrow\)\(a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=16\)
\(\Leftrightarrow\)\(2a^4+12a^2+2-16=0\)
\(\Leftrightarrow\)\(2\left(a^4+6a^2-7\right)=0\)
\(\Leftrightarrow\)\(a^4+6a^2-7=0\)
\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)
Vì \(a^2+7>0\) nên \(\orbr{\begin{cases}a-1=0\\a+1=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x-8=0\\x-6=0\end{cases}}\) \(\Leftrightarrow\)\(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Vậy...
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2x^2+2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3\left(x^2+y^2\right)\)\(b,\left(5x-1\right)+2\left(1-5x\right)\left(4x+5\right)+\left(5x+4\right)\)\(=\left[\left(5x-1\right)-\left(5x+4\right)\right]^2=25\)
c)\(Q=\left(x-y\right)^3+\left(x+y\right)^3+\left(x-y\right)^3-3xy\left(x+y\right)\)
\(=x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-3xy^2-3x^2y\)
\(=x^3+y^3\)
d)\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(2P=5^{32}-1\Rightarrow P=\dfrac{5^{32}-1}{2}\)
a)(x+1)(x+2)(x+3)(x+4)+1
=(x+1)(x+4)(x+2)(x+3)+1
=(x2+5x+4)(x2+5x+6)+1
Đặt a=(x2+5x+4) thì (x2+5x+4)(x2+5x+6)+1
= a.(a+2)+1
=a2+2a+1
=(a+1)2
Thay: =(x2+5x+4+1)2
=(x2+5x+5)2
b)(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
Đặt a=(x2+10x+16) thì (x2+10x+16)(x+5x+24)+1
= a.(a+8)+16
=a2+8x+16
=(a+4)2
Thay: =(x2+10x+16+4)2
=(x2+5x+20)2
a)(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
Đặt a=(x2+5x+4)
Ta có: (x2+5x+4)(x2+5x+6)+1
= a.(a+2)+1
=a2+2a+1
=(a+1)2
=(x2+5x+4+1)2
=(x2+5x+5)2
b)(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
Đặt a=(x2+10x+16)
Ta có:(x2+10x+16)(x+5x+24)+1
= a.(a+8)+16
=a2+8x+16
=(a+4)2
=(x2+10x+16+4)2
=(x2+5x+20)2
Mk yêu bé Shin-Conan lém