K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

b1:

câu a,f áp dụng a2-b2=(a-b)(a+b)

câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)

câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)

câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)

câu g xem lại đề

17 tháng 6 2017

b2:

\(f\left(x;y\right)=x^2+y^2-6x+5y+9=\left(x^2-6x+9\right)+\left(y^2+5y+\frac{25}{4}\right)-\frac{25}{4}\)

\(=\left(x-3\right)^2+\left(y+\frac{5}{2}\right)^2-\frac{25}{4}\ge-\frac{25}{4}\)

Dấu "=" xảy ra khi x=3 và y=-5/2

câu c làm tương tự

30 tháng 10 2016

\(B=7x^2-7xy-5x+5y\)

\(=7x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(7x-5\right)\)

\(E=x^2+7x+12\)

\(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

\(F=x^2-9x+18\)

\(=x^2-3x-6x+18\)

\(=x\left(x-3\right)-6\left(x-3\right)\)

\(=\left(x-3\right)\left(x-6\right)\)

\(H=8x^2-2x-1\)

\(=8x^2-4x+2x-1\)

\(=4x\left(2x-1\right)+\left(2x-1\right)\)

\(=\left(2x-1\right)\left(4x+1\right)\)

 

12 tháng 7 2019

a,\(xy+3x-7y-21\)

\(=x\left(y+3\right)-7\left(y+3\right)\)

\(=\left(y+3\right)\left(x-7\right)\)

12 tháng 7 2019

\(b,2xy-15-6x+5y\)

\(=\left(2xy-6x\right)+\left(-15+5y\right)\)

\(=2x\left(y-3\right)-5\left(3-y\right)\)

\(=2x\left(y-3\right)+5\left(y-3\right)\)

\(=\left(y-3\right)\left(2x+5\right)\)

17 tháng 7 2017

mk chỉ cần câu c thôi

17 tháng 7 2017

\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

30 tháng 8 2020

a) x2( x - 1 ) - x + 1

= x2( x - 1 ) - ( x - 1 )

= ( x - 1 )( x2 - 1 )

= ( x - 1 )( x - 1 )( x + 1 )

= ( x - 1 )2( x + 1 )

b) ( a + b )3 - ( a - b )3

= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b( 3a2 + b )

c) 6x( x - 3 ) + 9 - 3x2

= 6x2 - 18x + 9 - 3x2

= 3x2 - 18x + 9

= 3( x2 - 6x + 3 )

d) x( x - y ) - 5x + 5y

= x( x - y ) - ( 5x - 5y )

= x( x - y ) - 5( x - y )

= ( x - y )( x - 5 )

e) 3( x + 4 ) - x2 - 4x

= 3( x + 4 ) - ( x2 + 4x )

= 3( x + 4 ) - x( x + 4 )

= ( x + 4 )( 3 - x )

f) x2 + 4x - y2 + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

g) x2 + 5x

= x( x + 5 )

h) -x2 + 2x + 2y + y2

= ( y2 - x2 ) + ( 2x + 2y )

= ( y - x )( y + x ) + 2( x + y )

= ( x + y )( y - x + 2 )

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

10 tháng 8 2017

f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0 
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0 
<=>(x-y)2+2(x-y)+1+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))

11 tháng 8 2017

2x X -3 x 5 x X = 52 - 24

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$