K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

Ta có:   \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

24 tháng 9 2015

thế có giải không

không giải thì next

13 tháng 11 2021

\(a^3+b^3-c^3+3abc\)

\(=a^3+3ab.\left(a+b\right)+b^3-c^3-3abc-3ab.\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab.\left(a+b-c\right)\)

\(=\left(a+b+c\right).\left(a^2+ab+b^2-ab-ac+c^2\right)-3ab.\left(a+b+c\right)\)

\(=\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ca\right)\)

7 tháng 7 2016

a3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc

=(a+b+c)[(a+b)2-(a+b).c+c2]-3ab.(a+b+c)

=(a+b+c)(a2+b2+c2-ac-bc-ab)

27 tháng 9 2019

\(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)\)

\(=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)\)

27 tháng 9 2019

a3+b3+c3−3abca^3+b^3+c^3-3abca3+b3+c3−3abc

=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc

=(a+b)3+c3−(3a2b+3ab2+3abc)=\left(a+b\right)^3+c^3-\left(3a^2b+3ab^2+3abc\right)=(a+b)3+c3−(3a2b+3ab2+3abc)

=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)=\left(a+b+c\right)[\left(a+b\right)^2-c\left(a+b\right)+c^2]-3ab\left(a+b+c\right)=(a+b+c)[(a+b)2−c(a+b)+c2]−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2)−3ab(a+b+c)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=(a+b+c)(a2+2ab+b2−acbc+c2)−3ab(a+b+c)

=(a+b+c)(a2+2ab+b2−ac−bc+c2−3ab)=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=(a+b+c)(a2+2ab+b2−acbc+c2−3ab)

=(a+b+c)(a2+b2+c2−ab−ac−ab)=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-ab\right)=(a+b+c)(a2+b2+c2−abacab)

18 tháng 3 2017

cái thứ nhất -3(a+b)(b+c)(c+a)

cái thứ hai 0

18 tháng 3 2017

cái thứ 2 bằng (c+b+a). (a^2+b^2+c^2-ab-ac-ca)

14 tháng 2 2018

           \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+\right)\left(a^2+2ab+b^2-ac-bc +c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

14 tháng 2 2018

\(=a^3+3ab\left(a+b\right)+b^3+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

1 tháng 8 2019

a,

\(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b,

\(3x^2-7x+2=3x^2-x-6x+2=x\left(3x-1\right)-2\left(3x-1\right)=\left(3x-1\right)\left(x-2\right)\)

c,

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b+c\right)+c^3\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

=)

1 tháng 8 2019

a) \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)\)

\(=\left(x+3\right)\left(x+2\right)\)

b) \(3x^2-7x+2\)

\(=3x^2-x-6x+2\)

\(=x\left(3x-1\right)-2\left(3x-1\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

c) Phân tích thành nhân tử $a^3 + b^3 + c^3 - 3abc$ - Đại số - Diễn đàn Toán học

19 tháng 7 2016

a)a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc

=ab2+ac2+ba2+bc2+ca2+cb2+2abc

=(ab2+ba2)+(ac2+bc2)+(ca2+abc)+(cb2+abc)

=ab(a+b)+c2(a+b)+ca(a+b)+cb(a+b)

=(a+b)(ab+c2+ca+cb)

=(a+b)(a+c)(b+c)

b)a3-b3-c3-3abc

=(a-b)3-c3+3ab(a-b)-3abc

=(a-b-c)[(a-b)2+(a-b)c+c2]+3ab(a-b-c)

=(a-b-c)(a2-2ab+b2+ac-bc+c2+3ab)

=(a-b-c)(a2+b2+c2+ab-bc+ca)