K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

1) a) ta có : \(4x^2+1-y^2-4x\Leftrightarrow\left(2x-2\right)^2-y^2=\left(2x-2-y\right)\left(2x-2+y\right)\)

b) \(2x^2-y^2+2xy-xy\Leftrightarrow2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)

bài 2 : a) ta có : \(\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+3\right)-12=0\Leftrightarrow\dfrac{1}{2}x^2+x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1+\sqrt{13}\\x=-1-\sqrt{13}\end{matrix}\right.\) câu này mk nghỉ đề sai

b) ta có : \(\left(4x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

c) ta có : \(x\left(x-2018\right)-5x+2018.5=0\Leftrightarrow x^2-2023x+10090=0\)

\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)

bài 3 câu này bn chỉ cần nhân tung ra rồi rút gọn lại ra số là kết luận đc .

20 tháng 8 2018

Bài 1:

\(a,4x^2+1-y^2-4x\)

\(=\left(4x^2-4x+1\right)-y^2\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1-y\right)\left(2x-1+y\right)\)

\(b,2x^2-y^2+2xy-xy\)

\(=\left(2x^2+2xy\right)-\left(y^2+xy\right)\)

\(=2x\left(x+y\right)-y\left(x+y\right)\)

\(=\left(x+y\right)\left(2x-y\right)\)

Bài 2:

\(a,\dfrac{1}{2}x^2-\left(2-4\right).\left(\dfrac{1}{2}x+3\right)=12\)

\(\Leftrightarrow\dfrac{1}{2}x^2+2\left(\dfrac{1}{2}x+1\right)=12\)

\(\Leftrightarrow\dfrac{1}{2}x^2+x+2=12\)

\(\Leftrightarrow\dfrac{1}{2}x^2+x-10=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x\right)^2+2.\dfrac{1}{\sqrt{2}}x.\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}-\dfrac{1}{2}-10=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{2}}x+\dfrac{1}{\sqrt{2}}\right)^2-\dfrac{21}{2}=0\)

cái này vẫn có thể giải tiếp đc nhg mk thấy nếu bn hok lớp 8 thì chưa đã hok đến cái này nên mk nghĩ bn nên kt lại đề bài

\(b,\left(4x-1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=2\\4x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(c,x\left(x-2018\right)-5x+2018.5=0\)

\(\Leftrightarrow x\left(x-2018\right)-5\left(x-2018\right)=0\)

\(\Leftrightarrow\left(x-2018\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2018\\x=5\end{matrix}\right.\)

Bài 3: bn ơi đề sai

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

18 tháng 11 2018

\(4x^4+4x^3+5x^2+6x+1\)

\(=4x^4+4x^3+5x^2+5x+x+1\)

\(=4x^3.\left(x+1\right)+5x.\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right).\left(4x+5x+1\right)\)

p/s: tớ nghĩ sai đề nên đổi ạ :))

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

\(1.\)

\(x^2-2x+1-xy-y=\left(x-1\right)^2-y\left(x-1\right)=\left(x-1\right)\left(x-1-y\right)\)

\(2.\)

\(x^3-4x^2+4x-2x+2=x\left(x^2-4x+4\right)-2\left(x-1\right)=x\left(x-2\right)^2-2\left(x-1\right)\)

\(3.\)

\(10x-25-x^2+4y^2=4y^2-\left(x^2-10x+25\right)=4y^2-\left(x-5\right)^2=\left(2y+x-5\right)\left(2y-x+5\right)\)

\(4.\)

\(4x^2-2x+2xy-y=2x\left(2x-1\right)+y\left(2x-1\right)=\left(2x-1\right)\left(2x+y\right)\)

\(5.\)

\(4x\left(x-3\right)^2-3x^2+9x=4x\left(x-3\right)^2-3x\left(x-3\right)=\left(x-3\right)\left(4x^2-12x-3x\right)\)

28 tháng 6 2017

Phép trừ các phân thức đại số

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt