Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) 2x2y - 4xy2 + 6xy
= 2xy( x - 2y + 3 )
b) 4x3y2 - 8x2y3 + 2x4y
= 2x2y( 2xy - 4y2 + x2 )
c) 9x2y3 - 3x4y2 - 6x3y2 + 18y4
= 3y2( 3x2y - x4 - 2x3 + 6y2 )
d) 7x2y2 - 21xy2z + 7xyz - 14xy
= 7xy( xy - 3yz + z - 2 )
# Học tốt #
Phân tích các đa thức sau thành nhân tử :
a) x - y + 5x - 5y
= ( x + 5x ) - ( y + 5y )
= x . ( 1 + 6 ) - y . ( 1 + 6 )
= ( 1 + 6 ) . ( x - y )
\(a,x-y+5x-5y=\left(x-y\right)+5\left(x-y\right)=6\left(x-y\right)\)
Bài làm
a) 4x2 - 6x
= 2x( 2x - 3 )
b) 9x4y3 + 3x2y4
= 3x2y3( 3x2 + y )
c) x3 - 2x2 + 5x
= x( x2 - 2x + 5 )
d) 3x( x - 1 ) + 5( x - 1 )
= ( x - 1 )( 3x + 5 )
e) 2x2( x + 1 ) + 4( x + 1 )
= ( x + 1 )( 2x2 + 4 )
= ( x + 1 )2( x2 + 2 )
= 2( x + 1 )( x2 + 2 )
f) -3x - 6xy + 9xz
= -( 3x + 6xy - 9xz )
= -3x( 1 + 2y - 3z )
# Học tốt #
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
\(4x^4-9x^2\)
\(=\left(2x^2\right)^2-\left(3x\right)^2\)
\(=\left(2x^2-3x\right)\left(2x^2+3x\right)\)
a, ( 2x - 1)^2 - (4x + 2) ^2 = ( 2x - 1 - 4x- 2) ( 2x - 1 + 4x + 2) = (-2x-3)(6x+1) = - (2x+3)(6x+1)
b, 8x^3 + 12x^2y + 6xy^2 + y^3
= (2x)^2 + 3.(2x)^2 . y + 3.2x.y^2 + y^3
= (2x + y)^3
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a) \(4x^3y-12x^2y^3-8x^4y^3\)
\(=4x^2y\left(x-3y^2-2x^2y^2\right)\)
b) \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x-y+1\right)\left(x+y+1\right)\)
c) \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-y-1\right)\left(x+y-1\right)\)
d) \(x\left(x-2y\right)+3\left(2y-x\right)\)
\(=x\left(x-2y\right)-3\left(x-2y\right)\)
\(=\left(x-3\right)\left(x-2y\right)\)
e) \(x^2+4\)
\(=\left(x^4+4x^2+4\right)-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
f) \(5x^2-7x-6\)
\(=\left(5x^2-10x\right)+\left(3x-6\right)\)
\(=5x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(5x+3\right)\left(x-2\right)\)
1. Phân tích đa thức thành nhân tử:
a)\(4x^2-6x=2x\left(2x-3\right)\)
b)\(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)
c)\(-3x-6xy+5x=2x-6xy=2x\left(1-3y\right)\)
2. Phân tích đa thức thành nhân tử:
a)\(2x^2y-4xy^2+6xy=2xy\left(x-2y+3\right)\)
b)\(4x^3y^2-8x^2y^3+2x^4y=2x^2y\left(2xy-4y^2+x^2\right)\)c)\(7x^2y^2-21xy^2z+7xyz-14xy=7xy\left(xy-3yz+z-2\right)\)