K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

a) \(x^3-1+5x^2-5+3x-3\)

= \(x^3+5x^2+3x-9\)

= \(x^3-x^2+6x^2-6x+9x-9\)

= \(x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+6x+9\right)\)

= \(\left(x-1\right)\left(x-3\right)^2\)

b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

= \(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

= \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\) (1)

Đặt \(x^2+5x+4=a\)

Đa thức (1) \(\Leftrightarrow a\left(a+2\right)+1\)

= \(a^2+2a+1=\left(a+1\right)^2=\left(x^2+5x+4+1\right)^2\)

= \(\left(x^2+5x+6\right)^2\)

c) \(x^8+x^4+1\)

Ta thấy \(\left\{{}\begin{matrix}x^8\ge0\\x^4\ge0\\1>0\end{matrix}\right.\) \(\Rightarrow x^8+x^4+1\ge1\)

\(\Rightarrow\) Không phân tích thành nhân tử đc.

d) \(x^3+x^2+4\)

= \(x^3+2x^2-x^2+4\)

= \(x^2\left(x-2\right)-\left(x^2-4\right)\)

= \(x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\)

= \(\left(x-2\right)\left(x^2-x-2\right)\)

13 tháng 7 2017

a) x3 - 1 + 5x2 - 5 + 3x - 3
= (x - 1)(x2 + x + 1) + 5(x - 1)(x + 1) + 3(x - 1)
= (x - 1)(x2 + x + 1 + 5x + 5 + 3)
= (x - 1)(x2 + 6x + 9)
= (x - 1)(x + 3)2

b) (x + 1)(x + 2)(x + 3)(x + 4) + 1
= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) + 1
= (x2 + 5x + 4)(x2 + 5x + 6) + 1 (1)
Đặt t = x2 + 5x + 5
      => x2 + 5x + 4 = t - 1
           x2 + 5x + 6 = t + 1
(1) = (t - 1)(t + 1) + 1
     = t2 - 1 + 1
     = t2 = (x2 + 5x + 5)2

c) x8 + x4 + 1
= x8 + x7 + x6 - x7 - x6 - x5 + x5 + x4 + x3 - x3 - x2 - x + x2 + x + 1
= x6(x2 + x + 1) - x5(x2 + x + 1) + x3(x2 + x + 1) - x(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x6 - x5 + x3 - x + 1)

a: \(=6x^3-12x^2+x^2-2x+x-2\)

\(=\left(x-2\right)\left(6x^2+x+1\right)\)

b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)

\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)

\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)

c: \(=4x^3+x^2+4x^2+x+4x+1\)

\(=\left(4x+1\right)\left(x^2+x+1\right)\)

\(2.\)

\(a.\)

\(x^2-25=0\)

\(\Rightarrow x^2-5^2=0\)

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

\(b.\)

\(5x^2-10x=0\)

\(\Rightarrow5x\left(x-10\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x=0\\x-10=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15

9 tháng 9 2017

a, \(x^3-x^2=4x^2-8x+4\)

\(\Rightarrow x^3-x^2-4x^2+8x-4=0\)

\(\Rightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-2x-2x+4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b, \(\left(x-1\right)\left(x^2+x+1\right)=7\)

\(\Rightarrow x^3-1=7\Rightarrow x^3=2^3\Rightarrow x=2\)

c, \(2\left(x+5\right)-x^2-5x=0\)

\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

d, \(x^2-3x=-2\)

\(\Rightarrow x^2-x-2x+2=0\)

\(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Chúc bạn học tốt!!!

20 tháng 3 2020

a) \(\left(x-9\right)\left(x-7\right)+1\)

\(=x^2-16x+63+1\)

\(=x^2-16x+64\)

\(=\left(x-8\right)^2\)

b) \(x^3+2x^2-3x-6\)

\(=x^2\left(x+2\right)-3x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-3x\right)\)

\(=x\left(x+2\right)\left(x-3\right)\)

c) \(x^2-y^2+xz-yz\)

\(=x\left(x+z\right)-y\left(y+z\right)\)

\(=\left(x-y\right)\left(y+z\right)\)

d) \(x^3-x+3x^2y+y^3-y\)

botay:(