Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có:
thời gian ô tô đi trên quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}\)
thời gian ô tô đi trên đoạn đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của ô tô trên toàn bộ quãng đường là:
\(v_{tb1}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{S}{S\left(\frac{1}{2v_1}+\frac{1}{2v_2}\right)}\)
\(\Leftrightarrow v_{tb1}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_1+v_2}\)
b)ta có:
quãng đường ô tô đi được trong nửa thời gian đầu là:
S1=v1t1=\(\frac{v_1t}{2}\)
quãng đường ô tô đi được trong thời gian còn lại là:
S2=v2t2=\(\frac{v_2t}{2}\)
vận tốc trung bình của ô tô là:
\(v_{tb2}=\frac{S_1+S_2}{t}=\frac{\frac{vt_1}{2}+\frac{v_2t}{2}}{t}\)
\(\Leftrightarrow v_{tb2}=\frac{t\left(\frac{v_1}{2}+\frac{v_2}{2}\right)}{t}=\frac{v_1+v_2}{2}\)
c)lấy vtb1-vtb2 ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-\left(v_1+v_2\right)^2}{2v_1+2v_2}\)
\(=\frac{4v_1v_2-\left(v_1^2+2v_1v_2+v_2^2\right)}{2v_1+2v_2}\)
\(=\frac{-v_1^2+2v_1v_2-v_2^2}{2v_1+2v_2}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2v_1+2v_2}\)
mà (v1-v2)2\(\ge\) 0 nên -(v1-v2)2\(\le\) 0
mà vận tốc ko âm nên 2v1+2v2>0
từ hai điều trên nên ta suy ra vận tốc trung bình tìm được ở câu a) bé hơn câu b)
gọi s là quãng đường AB
s1,s2,s3 lần lượt là từng quãng đường mà xe di chuyển:
s1 = \(\frac{1}{3}s\)
=> s2 + s3 = \(\frac{2}{3}s\)
Thời gian xe di chuyển trong \(\frac{1}{3}\) quãng đường là:
t1 = \(\frac{s_1}{v_1}=\frac{s}{3.40}=\frac{s}{120}\)
Gọi t' là thời gian đi ở quãng đường (\(\frac{2}{3}s\)) còn lại:
Trong \(\frac{2}{3}\) thời gian đầu, xe đi được quãng đường là
s2 = \(\frac{2}{3}t'.v_2=\frac{2}{3}.t'.45=30t'\)
Quãng đường xe đi được trong thời gian còn lại là:
s3=\(\frac{1}{3}t'.v_3=\frac{1}{3}t'.30=10t'\)
Mặt khác ta có
s2 + s3 = \(\frac{2}{3}s\)
=> 30t' + 10t' = \(\frac{2}{3}s\)
=> 40t'=\(\frac{2}{3}s\)
=> t'=\(\frac{s}{60}\)
Vận tốc trung bình của xe là:
\(v_{tb}=\frac{s}{t+t'}=\frac{s}{\frac{s}{120}+\frac{s}{60}}=\frac{1}{\frac{1}{120}+\frac{1}{60}}=40\)(km/h)
Một xe đi từ A về B, trong nửa quãng đương đầu, xe chuyển động với vận tốc v1= 40 km/h. Trên nửa quãng đường sau xe chuyển động thành 2 giai đoạn: nửa thời gian đầu vận tốc v2 = 45 km/h, thời gian còn lại đi với vận tốc v3 = 30 km/h. Tính vận tốc trung bình của xe trên cả quãng đường AB.
Đề phải như này mới đúng
Vận tốc trung bình của cả đoạn đường là:
\(v_{tb}\) = \(\frac{v_1.t+v_2.t}{2.t}\) = \(\frac{v_1+v_2}{2}\) = ( km/h)
Mà \(v_{tb}\) = \(45\) , \(v_1\) = \(50\) nên \(v_2\) =
gọi thời gian ở quãng đường đầu và quãng đường thứ hai lần lượt là: t1( S1, V1) , t2( S2, V2)
theo bài ta có : t1=t2=1/2 t
Vtb= S1+S2/ t1+t2= 8
thay dữ liệu vào phép tính trên ta đc:
Vtb= S1+S2/ t1+t2= V1*t1 + V2*t2/ t1+t2 = 1/2t*V1 +1/2t*V2/ 1/2t+1/2t
<=> t*(1/2*V1 +1/2*V2)/ t = 1/2*12 + 1/2*V2 = 8
= 6+ 1/2* V2 = 8
= V2 = 4 (km/h)
Gọi thời gian xe đi đoạn nửa đoạn đầu và nửa đoạn sau là \(t_1\) và \(t_2\)
Thời gian xe đi nửa quãng đường đầu là: \(t_1=\frac{\frac{1}{2}S}{v_1}=\frac{S}{24}\)
Thời gian xe đi nửa quãng đường sau là: \(t_2=\frac{\frac{1}{2}S}{v_2}=\frac{S}{2v_2}\)
Vận tốc trung bình của xe là: \(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{24}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{24}+\frac{1}{2v_2}}=8km/h\)
\(\Rightarrow\frac{1}{24}+\frac{1}{2v_2}=\frac{1}{8}\)
\(\Rightarrow2v_2=12\)
\(\Rightarrow v_2=6km/h\)
(đề bài trong 1/2 tgian đầu 54km/h và 1/2 tgian sau với 36km/h à)\(=>vtb2.t=\dfrac{1}{2}t.v2+\dfrac{1}{2}tv3=>vtb2=\dfrac{v2+v3}{2}=45km/h\)
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{vtb2}}=\dfrac{S}{\dfrac{S}{60}+\dfrac{S}{90}}=\dfrac{S}{\dfrac{150S}{5400}}=36km/h\)
ta có:
thới gian ô tô đó đi 1/5 quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{5v_1}=\frac{S}{225}\)
thời gian ô tô đi 2/5 quãng đường tiếp theo là:
\(t_2=\frac{S_2}{v_2}=\frac{2S}{5v_2}=\frac{2S}{75}\)
thời gian ô tô đi hết quãng đường còn lại là:
\(t_3=\frac{S_3}{v_3}=\frac{2S}{5v_3}=\frac{2S}{150}=\frac{S}{75}\)
vận tốc trung bình của ô tô là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{\frac{S}{225}+\frac{2S}{75}+\frac{S}{75}}\)
\(\Leftrightarrow v_{tb}=\frac{S}{S\left(\frac{1}{225}+\frac{2}{75}+\frac{1}{75}\right)}\)
\(\Leftrightarrow v_{tb}=\frac{1}{\frac{1}{225}+\frac{2}{75}+\frac{1}{75}}=22,5\) km/h
vậy vận tốc trung bình của ô tô là 22,5km/h
a) Đổi: 30 phút=0,5h
Gọi chiều dài quãng đường từ AB là S
Thời gian đi từ A đến B của ô tô 1 là t1
\(t_1=\dfrac{S}{2.v_1}+\dfrac{S.\left(v_1+v_2\right)}{2v_1v_2}\left(a\right)\)
Gọi thời gian đi từ B đến A của xe 2 là t2. Ta có:
\(S=\dfrac{t_1}{2}.v_1+\dfrac{t_2}{2}.v_2=t_2\dfrac{\left(v_1+v_2\right)}{2}\)( b)
Theo bài ra ta có :\(t_1-t_2=0,5\left(h\right)\)
Thay giá trị của vA ; vB vào ta có S = 60 km.
Thay s vào (a) và (b) ta tính được t1=2h; t2=1,5 h
b) Đặt A bằng M, B bằng N
Gọi t là thời gian mà hai xe đi được từ lúc xuất phát đến khi gặp nhau. Khi đó quãng đường mỗi xe đi được trong thời gian t là:
Hai xe gặp nhau khi : SM + SN=SA+SB=S = 60 và chỉ xảy ra khi \(0,75\le t\le1,5\left(h\right)\) .
Từ điều kiện này ta sử dụng (1) và (4): 20t + 15 + ( t - 0,75) 60 = 60
Giải phương trình này ta tìm được \(t=\dfrac{9}{8}\left(h\right)\) và vị trí hai xe gặp nhau cách B là 37,5km nên cách A là 60km-37,5km=22,5(km)