K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

gọi tuổi con hiện nay là x thì tuổi mẹ hiện nay là x x 8 , ta có :   con / mẹ =x + 10 / x x 8 + 10 / = 1 / 3

                                                                          = >      ( x x 8 + 10 ) x 1 = ( x + 10 ) x 3

                                                                                    x x 8 + 10 = x x 3 + 30 ( 30 = 10 x 3 )

                                                                                 x x 8 - x x 3 = 30 - 10

                                                                                      x x 5 = 20

                                                                                  x = 20 : 5

                                                                                  x = 4                        = >    tuổi con hiện nay là : 4 tuổi 

                                          tuổi mẹ hiện nay là :             4 x 8 = 32 ( tuổi ) 

                 

25 tháng 1 2018

Tham khảo :

hai vòi nước cùng chảy vào một cái bể không có nước,trong 4h48' sẽ đầy bể.nếu mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước.hỏi mỗi vòi khác chảy thì trong bao lâu mới đầy bể?

 Gọi năng suất vòi 1 là x (x>0) (năng suất ở đây hiểu là sau 1 giờ thì vòi 1 chảy được 1 lượng nước nào đó). Gọi năng suất vòi 2 là y (y>0) => năng suất chung cả hai vòi là x+y. Do sau 4,8 giờ (4h48') thì 2 vòi chảy cùng đầy bể nên 1 giờ thì 2 vòi chảy được lượng nước là 1/4,8 bể = 5/24 bể => x+y =5/24 (1). Do mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước nên ta có phương trình 3x+4y=3/4 (bể) (2), từ (1) và (2) => ta có hệ phương trình x+y =5/24 và 3x+4y=3/4. Giải hệ phương trình này ta được x=1/12 và y=1/8. => thời gian chảy đẩy bể của vòi 1 là 1/x = 12h, và tương tự thì vòi 2 là 8h

Gọi thời gian chảy riêng của vòi 1 và vòi 2 lần lượt là a,b

Theo đề, ta có hệ:

1/a+1/b=1/6 và 10/a+4/b=1

=>a=18; b=9

20 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể; vòi thứ hai chảy được Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

QUẢNG CÁO

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

13 tháng 9 2018

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể.

(Điều kiện: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được 1/x bể; vòi thứ hai chảy được 1/y bể.

Sau 1 giờ 20 phút = 80 phút, cả hai vòi cùng chảy thì đầy bể nên ta có phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể nước nên ta có phương trình :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có hệ phương trình:

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9 . Khi đó hệ phương trình trở thành :

Giải bài 38 trang 24 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (= 2 giờ) , vòi thứ hai 240 phút (= 4 giờ)

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

13 tháng 12 2019

Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (giờ) (x>6)

        thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)

Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể

⇒ 1 x + 1 y = 1 6  (1)

vòi thứ  nhất chảy trong  2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 2/5 bể   ⇒ 2. 1 x + 3. 1 y = 2 5  (2)

Từ (1) và (2) ta có hệ phương trình  1 x + 1 y = 1 6 2. 1 x + 3. 1 y = 2 5 ⇔ x = 10 y = 15

Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.

Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.

25 tháng 5 2019

Đổi 2 giờ 55 phút = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 giờ

Gọi x (giờ) là thời gian chảy riêng đầy bể của vòi thứ nhất.

Điều kiện: x > 35/12

Khi đó thời gian chảy riêng đầy bể của vòi thứ hai là x + 2 (giờ)

trong 1 giờ, vòi thứ nhất chảy được 1/x (bể)

trong 1 giờ, vòi thứ hai chảy được 1/(x + 2 ) (bể)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị x = - 7/6 không thỏa mãn điều kiện bài toán.

Vậy vòi thứ nhất chảy riêng đầy bể trong 5 giờ

vòi thứ hai chảy riêng đầy bể trong 5 + 2 = 7 giờ

26 tháng 1 2023

Để tìm ra thời gian mỗi vòi chảy một mình thì đầy bể, ta có thể sử dụng phương pháp sau:

Tìm ra thời gian hai vòi chảy chung là bao lâu: 4 giờ 48 phút (thời gian hai vòi chảy chung để đầy bể).

Tìm ra thời gian hai vòi chảy riêng là bao lâu: 9 giờ + 5 giờ 12 phút = 14 giờ 12 phút (thời gian hai vòi chảy riêng để đầy bể)

Tìm ra thời gian mỗi vòi chảy một mình: 14 giờ 12 phút / 2 = 7 giờ 6 phút (thời gian mỗi vòi chảy một mình để đầy bể)

Vậy, mỗi vòi chảy một mình trong 7 giờ 6 phút thì đầy bể.

11 tháng 8 2023

Đổi 6h40p=20/3h ; 4h24p=22/5h 

Mỗi giờ vòi I, II chảy được lần lượt x,y lượng nước tỉ lệ so với bể (x,y>0)

Ta có: 20/3 x + 20/3 y = 1 (a)

Bên cạnh đó, vòi I chảy 4h24p và vòi II chảy 2h được 2/3 bể:

=> 22/5 x + 2y = 2/3 (b)

Từ (a), (b) lập hpt:

\(\left\{{}\begin{matrix}\dfrac{20}{3}x+\dfrac{20}{3}y=1\\\dfrac{22}{5}x+2y=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{72}\left(TM\right)\\y=-\dfrac{1}{360}\left(loại\right)\end{matrix}\right.\)

Xem lại đề em ơi

 

17 tháng 12 2022

- Gọi phần bể vòi thứ nhất, thứ hai chảy được trong 1 phút lần lượt là \(x,y\left(0< x,y< 1\right)\)

Đổi 1h30p=90p

- Hai vòi nước cùng chảy vào 1 bể cạn thì sau 1h30p đầy bể nên:

\(90\left(x+y\right)=1\Rightarrow x+y=\dfrac{1}{90}\left(1\right)\)

- Vòi 1 chảy trong 15p rồi đến vòi 2 chảy tiếp trong 20p được 1/5 bể nên:

\(15x+20y=\dfrac{1}{5}\left(2\right)\)

(1), (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15x+15y=\dfrac{1}{6}\\15x+20y=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{1}{90}\\5y=\dfrac{1}{30}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{225}\\y=\dfrac{1}{150}\end{matrix}\right.\)

Thời gian vòi 1 chảy để đầy bể: \(1:\dfrac{1}{225}=225\) phút = 3,75h.

Thời gian vòi 2 chảy để đầy bể: \(1:\dfrac{1}{150}=150\) phút=2,5h.

6 tháng 11 2023

Để giải quyết bài toán này, chúng ta cần xác định lượng nước mà mỗi vòi chảy vào bể trong một giờ.

Gọi x là lượng nước mà mỗi vòi chảy vào bể trong một giờ. Theo giả thiết, khi mở cả hai vòi trong một giờ, bể sẽ được 1/3 đầy. Vì vậy, lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x (do có hai vòi).

Theo giả thiết ban đầu, nếu hai vòi cùng chảy vào bể trong 6 giờ, bể sẽ đầy. Với lượng nước mà mỗi vòi chảy vào bể trong một giờ là 2x, ta có:

6 * 2x = 1 (bể đầy)

Từ đó, ta có:

12x = 1

x = 1/12

Vậy, mỗi vòi chảy riêng thì để bể đầy, mỗi vòi sẽ mất 1/12 giờ, hay khoảng 5 phút.

Lưu ý rằng đây là một bài toán giả định, và kết quả phụ thuộc vào giả thiết ban đầu.