Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mệnh đề sai;
b) Mệnh đề chứa biến;
c) Mệnh đề chứa biến;
d) Mệnh đề đúng.
\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)
\(\exists x\in R,x\le2\Rightarrow x^2\le4\)
\(\exists x\in R,x^2\le4\Rightarrow x\le2\)
Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)
Cảm on nhiều ạ
thì phân tích thành nhân tử là oke
\(x^2+x+1>0\)
\(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)*đúng*
Ta có:\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\in R\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)
1: Mệnh đề đúng
2: Mệnh đề đúng
3: Mệnh đề đúng
4: Mệnh đề đúng
5: Mệnh đề sai
a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)
b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)
c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)
e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)
f) Có một số thực \(x\) mà \(x^2+x+1>0\) (mệnh đề đúng)
a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)
b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)
c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)
e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
Câu 3:
a: Vì \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
nên P(x) luôn là mệnh đề đúng
b: \(\Leftrightarrow x< =\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< =0\)
\(\Leftrightarrow\sqrt{x}-1< =0\)
=>0<=x<=1