K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)

Số hạng ko chứa x tương ứng với 12-4k=0

=>k=3

=>SH đó là \(C^3_4=4\)

\(C^1_n+C^2_n=15\)

=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)

=>\(n+\dfrac{n^2-n}{2}=15\)

=>2n+n^2-n=30

=>n^2+n-30=0

=>n=5

=>(x+2/x^4)^5

SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)

SỐ hạng ko chứa x tương ứng với 5-5k=0

=>k=1

=>Số hạng đó là 5*2=10

SHTQ của \(\left(3x+2\right)^5\) là \(C^k_5\cdot\left(3x\right)^{5-k}\cdot2^k=C^k_5\cdot3^{5-k}\cdot2^k\cdot x^{5-k}\)

Hệ số của số hạng chứa x tương ứng với 5-k=1

=>k=4

=>Hệ số là \(C^4_5\cdot3^{5-4}\cdot2^4=240\)

6 tháng 5 2023

\(C^1_n+C^2_n=15\) (Điều kiện: \(n\ge2\))

\(\Leftrightarrow n+\dfrac{n!}{2!\left(n-2\right)!}=15\)

\(\Leftrightarrow n+\dfrac{n\left(n-1\right)\left(n-2\right)!}{2\left(n-2\right)!}=15\)

\(\Leftrightarrow n+\dfrac{n\left(n-1\right)}{2}=15\)

\(\Leftrightarrow2n+n\left(n-1\right)=30\)

\(\Leftrightarrow2n+n^2-n=30\)

\(\Leftrightarrow n^2+n-30=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=5\\n=-6\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{2}{x^4}\right)^5=C^k_5x^{5-k}\left(\dfrac{2}{x^4}\right)^k=C^k_5x^{5-k-4k}.2^k=C^k_5x^{5-5k}.2^k\)

\(ycbt\Leftrightarrow5-5k=0\Leftrightarrow k=1\)

\(\Rightarrow C^1_5.2^1=10\)

Vậy số hạng không chứa \(x\) trong khai triển là \(10\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có:

\({(2x + 3)^5} = 32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243\)

Hệ số của \({x^3}\) là 720

Hệ số của \({x^4}\) là 240.  

Vậy  hệ số của \({x^3}\) lớn hơn hệ số của \({x^4}\).

13 tháng 2 2018

\(1B\backslash2B\backslash3B\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có:

\(A_n^2 + 24C_n^1 = \frac{{n!}}{{\left( {n - 2} \right)!}} + 24.\frac{{n!}}{{1!\left( {n - 1} \right)!}} = n(n - 1) + 24n\)

\( \Leftrightarrow {n^2} + 23n = 140 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 28\;(L)\end{array} \right.\)

Thay \(a = 2x,b =  - 1\) trong công thức khai triển của \({(a + b)^5}\), ta được:

\(\begin{array}{l}{(2x - 1)^5} = {\left( {2x} \right)^5} + 5.{\left( {2x} \right)^4}.( - 1) + 10.{\left( {2x} \right)^3}.{( - 1)^2}\\ + 10.{\left( {2x} \right)^2}.{( - 1)^3} + 5.(2x).{( - 1)^4} + {( - 1)^5}\\ = 32{x^5} - 80{x^4} + 80{x^3} - 40{x^2} + 10x - 1\end{array}\)

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

17 tháng 9 2018

a) Tập \(\left\{-1;2\right\}\) chỉ gồm 2 phần tử là hai số - 1 và 2.

Tập hợp \(\left[-1;2\right]\) có vô số phần tử, là tất cả các số thực giữa -1 và 2 (kể cả -1 và 2).

Tập hợp \(\left(-1;2\right)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không bao gồm -1 và 2).

Tập hợp \([-1;2)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không kể 2, có bao gồm -1).

Tập hợp \((-1;2]\) có vô số phần tử, là các số thực giữa - 1 và 2 (bao gồm -1 nhưng không bao gồm 2).

b) \(A=\left\{x\in\mathbb{N}|-2\le x\le3\right\}=\left\{0;1;2;3\right\}\); \(B=\left\{x\in\mathbb{R}|-2\le x\le3\right\}=\left[-2;3\right]\)

c) \(A=\left\{x\in\mathbb{N}|x< 3\right\}=\left\{0;1;2\right\}\); \(B=\left\{x\in\mathbb{R}|x< 3\right\}=\left(-\infty;3\right)\)