K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

\(1) x^2-3x-4=0 \\\Leftrightarrow -2x^2-4=0 \\\Leftrightarrow -2(x^2+2)=0 \\\Leftrightarrow x^2+2=0 \)

\(\Leftrightarrow x^2=-2 \) (vô lý)

Vậy \(S=\left\{\varnothing\right\}\)

21 tháng 2 2019

Bài 2:

a) Khi m = - 2, phương trình (1) trở thành:\(x^2-6x-7=0\)

\(\Delta=b^2-4ac=\left(-6^2\right)-4.\left(-7\right)=64\)

\(\sqrt{\Delta}=\sqrt{64}=8>0\)

Phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{6+8}{2}=7\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{6-8}{2}=-1\)

Vậy \(S=\left\{7;-1\right\}\)

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

13 tháng 4 2017

*,với m=-2 thì bạn thay vào pt rồi giải như thường nha

*,\(\Delta\)=[-2(m+1)]2-4(2m-4)=4(m2+2m+1)-8m+16=4m2+8m +4-8m+16=4m2+20>0

=> phương trình luôn có 2 nghiệm phân biệt

*, theo hệ thức Vi et x1+x2=2(m+1);x1x2=2m-4

Ta có A=(x1+x2)2-2x1x2

Bạn thay vào rồi tính ra đc A=4m2+4m +12=(2m)2+4m+1+11=(2m+1)2+11 lớn hơn hoặc = 11

dấu = xảy ra khi 2m+1=0=> m=-1/2

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

25 tháng 2 2019

Để PT có 2 nghiệm phân biệt thì:

\(\Delta=\left(2m+1\right)^2-4\left(m+1\right)\left(m-1\right)>0\\ \Leftrightarrow4m^2+4m+1-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+4m+1-4m^2+4>0\\ \Leftrightarrow4m+5>0\Leftrightarrow m>\dfrac{-5}{4}\)

Mà theo Viète, ta có:

\(x_1+x_2=-\dfrac{b}{a}=\dfrac{2m+1}{m+1}\)

\(x_1x_2=\dfrac{c}{a}=\dfrac{m-1}{m+1}\)

Do đó:

\(x^2_1+x_2^2-2010x_1x_2=2013\\ \Leftrightarrow x_1^2+2x_1x_2+x^2_2-2012x_1x_2=2013\\ \Leftrightarrow\left(x_1+x_2\right)^2-2012x_1x_2=2013\\ \Leftrightarrow\dfrac{\left(2m+1\right)^2}{\left(m+1\right)^2}-2012\dfrac{m-1}{m+1}=2013\\ \Leftrightarrow\dfrac{\left(2m+1\right)^2-2012\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=2013\\ \Leftrightarrow4m^2+4m+1-2012\left(m^2-1\right)=2013\left(m^2+2m+1\right)\\ \Leftrightarrow4m^2+4m+1-2012m^2+2012=2013m^2+4026m+2013\\ \Leftrightarrow4021m^2+4022m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-\dfrac{4022}{4021}\end{matrix}\right.\left(t/m\right)\)

Vậy với m như trên thì PT có 2 nghiệm thoả mãn đề bài.

Chúc bạn học tốt nhaok.